B is the correct answer I think
Answer:
The polynomial function of the lowest degree that has zeroes at -1, 0 and 6 and with a leading coefficient of one is
.
Step-by-step explanation:
From Fundamental Theorem of Algebra, we remember that the degree of the polynomials determine the number of roots within. Since we know three roots, then the factorized form of the polynomial function with the lowest degree is:
(1)
Where
,
and
are the roots of the polynomial.
If we know that
,
and
, then the polynomial function in factorized form is:
(2)
And by Algebra we get the standard form of the function:


(3)
The polynomial function of the lowest degree that has zeroes at -1, 0 and 6 and with a leading coefficient of one is
.
Answer:
The solution to this question can be defined as follows:
Step-by-step explanation:
Please find the complete question in the attached file.
![A = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D)
now for given values:
![\left[\begin{array}{ccc} \frac{3}{4} - \lambda & \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2} - \lambda & 0\\ -\frac{1}{4}& -\frac{1}{4} & 0 -\lambda \end{array}\right]=0 \\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%20-%5Clambda%20%5Cend%7Barray%7D%5Cright%5D%3D0%20%5C%5C%5C%5C)
![\to (\frac{3}{4} - \lambda ) [-\lambda (\frac{1}{2} - \lambda ) -0] - 0 - \frac{1}{4}[0- \frac{1}{2} (\frac{1}{2} - \lambda )] =0 \\\\\to (\frac{3}{4} - \lambda ) [(\frac{\lambda}{2} + \lambda^2 )] - \frac{1}{4}[\frac{\lambda}{2} - \frac{1}{4}] =0 \\\\\to (\frac{3}{8}\lambda + \frac{3}{4} \lambda^2 - \frac{\lambda^2}{2} - \lambda^3 - \frac{\lambda}{8} + \frac{1}{16}=0 \\\\\to (\lambda - \frac{1}{2}) (\lambda -\frac{1}{4}) (\lambda - \frac{1}{2}) =0\\\\](https://tex.z-dn.net/?f=%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B-%5Clambda%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%20-0%5D%20-%200%20-%20%5Cfrac%7B1%7D%7B4%7D%5B0-%20%5Cfrac%7B1%7D%7B2%7D%20%28%5Cfrac%7B1%7D%7B2%7D%20-%20%5Clambda%20%29%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B4%7D%20-%20%5Clambda%20%29%20%5B%28%5Cfrac%7B%5Clambda%7D%7B2%7D%20%2B%20%5Clambda%5E2%20%29%5D%20-%20%5Cfrac%7B1%7D%7B4%7D%5B%5Cfrac%7B%5Clambda%7D%7B2%7D%20-%20%20%5Cfrac%7B1%7D%7B4%7D%5D%20%3D0%20%5C%5C%5C%5C%5Cto%20%20%28%5Cfrac%7B3%7D%7B8%7D%5Clambda%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Clambda%5E2%20-%20%5Cfrac%7B%5Clambda%5E2%7D%7B2%7D%20-%20%5Clambda%5E3%20-%20%5Cfrac%7B%5Clambda%7D%7B8%7D%20%2B%20%5Cfrac%7B1%7D%7B16%7D%3D0%20%5C%5C%5C%5C%5Cto%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%28%5Clambda%20-%5Cfrac%7B1%7D%7B4%7D%29%20%28%5Clambda%20-%20%5Cfrac%7B1%7D%7B2%7D%29%20%3D0%5C%5C%5C%5C)


In point b:
Its
spectral radius is less than 1 hence matrix is convergent.
In point c:
![\to c^{(k+1)} = A x^{k}+C \\\\\to x(0) = \left(\begin{array}{c}3&1&2\end{array}\right) , c = \left(\begin{array}{c}2&2&4\end{array}\right)\\\\ \to x^{(k+1)} = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right] x^k + \left[\begin{array}{c}2&2&4\end{array}\right] \\\\](https://tex.z-dn.net/?f=%5Cto%20c%5E%7B%28k%2B1%29%7D%20%3D%20A%20x%5E%7Bk%7D%2BC%20%5C%5C%5C%5C%5Cto%20x%280%29%20%3D%20%20%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D3%261%262%5Cend%7Barray%7D%5Cright%29%20%20%2C%20c%20%3D%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%29%5C%5C%5C%5C%20%20%5Cto%20x%5E%7B%28k%2B1%29%7D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Cfrac%7B3%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B4%7D%26%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%26%200%5C%5C%20-%5Cfrac%7B1%7D%7B4%7D%26%20-%5Cfrac%7B1%7D%7B4%7D%20%26%200%5Cend%7Barray%7D%5Cright%5D%20x%5Ek%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%262%264%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%5C%5C)
after solving the value the answer is
:
![\lim_{k \to \infty} x^k=o = \left[\begin{array}{c}0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Clim_%7Bk%20%5Cto%20%5Cinfty%7D%20x%5Ek%3Do%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%260%260%5Cend%7Barray%7D%5Cright%5D)
Answer:
359,000,000
Step-by-step explanation:
Brainliest plz :3