Answer:
x: (-5.0)
y: (0, -17.5)
Step-by-step explanation:
The x-intercept of the line is when y=0. In the table is the point (-5,0). This is the x-intercept.
To find the y-intercept, find when x=0. Write an equation for the table in y=mx + b. Find the slope between two points first.

The slope is -3.5. So the equation is
y - 7 = -3.5(x--7)
y - 7 = -3.5 (x+7)
y - 7 = -3.5x - 24.5
y = 3.5x - 17.5
Since it is in y=mx+b, b= -17.5 and this is the y-intercept.
By applying Pythagorean's theorem, the missing side of this right-angled triangle is: A. 7√3 inches.
<h3>How to find the missing side?</h3>
By critically observing the triangle shown in the image attached below, we can logically deduce that it is a right-angled triangle. Thus, we would find the missing side by applying Pythagorean's theorem:
z² = x² + y²
Also, the sides of this right-angled triangle are:
- Opposite side = x inches.
- Adjacent side = 7 inches.
Substituting the given parameters into the formula, we have;
14² = x² + 7²
196 = x² + 49
x² = 196 - 49
x² = 147
x = √147
x = √49 × √3
x = 7√3 inches.
Read more on Pythagorean theorem here: brainly.com/question/23200848
#SPJ1
I believe you may have the order incorrect. If we were looking at g(f(x)) the answer would be 47. We would get this by sticking the 3 in for x in f(x) and solving, which would give us 48. We would then stick that answer in for x in the g(x), giving us 47.
In its current order the answer would be 28.
Answer: Choice D
(a-e)/f
=======================================
Explanation:
Points D and B are at locations (e,f) and (a,0) respectively.
Find the slope of line DB to get
m = (y2-y1)/(x2-x1)
m = (0-f)/(a-e)
m = -f/(a-e)
This is the slope of line DB. We want the perpendicular slope to this line. So we'll flip the fraction to get -(a-e)/f and then flip the sign from negative to positive. That leads to the final answer (a-e)/f.
Another example would be an original slope of -2/5 has a perpendicular slope of 5/2. Notice how the two slopes -2/5 and 5/2 multiply to -1. This is true of any pair of perpendicular lines where neither line is vertical.