<h3>
Answer:</h3>
Mike is involved in developing the model building codes that various states and local authorities in the United States adopt. He works with the <u>Workers</u> , which consists of members who are building code officials and building safety professionals.
Answer:
There is not going to be pressure build up in the system,that is isobaric process.
Explanation:
Assumptions to be made
1. No mass is gained or lost during the heating process.
2. There are no friction losses,so work is transmitted efficiently.
3. It was started the water in the drum and its surrounding have same temperature.
4. This system is closed,so there is no mass transfer across its boundaries.
Answer:
(iv) second law of thermodynamics
Explanation:
The Clausius inequality expresses the second law of thermodynamics it applies to the real engine cycle.It is defined as the cycle integral of change in entropy of a reversible system is zero. It is nothing but mathematical form of second law of thermodynamics . It also states that for irreversible process the cyclic integral of change in entropy is less than zero
Answer: 1766.667 Ω = 1.767kΩ
Explanation:
V=iR
where V is voltage in Volts (V), i is current in Amps (A), and R is resistance in Ohms(Ω).
3mA = 0.003 A
Rearranging the equation, we get
R=V/i
Now we are solving for resistance. Plug in 0.003 A and 5.3 V.
R = 5.3 / 0.003
= 1766.6667 Ω
= 1.7666667 kΩ
The 6s are repeating so round off to whichever value you need for exactness.
Answer:
Explanation:
First we calculate the mass of the aire inside the rigid tank in the initial and end moments.
(i could be 1 for initial and 2 for the end)
State1
State2
So, the total mass of the aire entered is
At this point we need to obtain the properties through the tables, so
For Specific Internal energy,
For Specific enthalpy
For the second state the Specific internal Energy (6bar, 350K)
At the end we make a Energy balance, so
No work done there is here, so clearing the equation for Q
The sign indicates that the tank transferred heat<em> to</em> the surroundings.