Answer:
The solution for the given problem is done below.
Explanation:
M1 = 2.0
= 0.3636
= 0.5289
= 0.7934
Isentropic Flow Chart: M1 = 2.0 , = 1.8
T1 = (1.8)(288K) = 653.4 K.
In order to choke the flow at the exit (M2=1), the above T0* must be stagnation temperature at the exit.
At the inlet,
T02= = (1.8)(288K) = 518.4 K.
Q= Cp(T02-T01) = = 135.7* J/Kg.
In order to create a robotic dog, you are needing the necessary parts to create Goddard from Jimmy nutreon boy genius
Answer:
The flexural strength of a specimen is = 78.3 M pa
Explanation:
Given data
Height = depth = 5 mm
Width = 10 mm
Length L = 45 mm
Load = 290 N
The flexural strength of a specimen is given by
78.3 M pa
Therefore the flexural strength of a specimen is = 78.3 M pa
Answer:
$7,778.35
Explanation:
At year 3, the final payment of the remaining balance is equal to the present worth P of the last three payments.
First, calculate the uniform payments A:
A = 12000(A/P, 4%, 5)
= 12000(0.2246) = 2695.2 (from the calculator)
Then take the last three payments as its own cash flow.
To calculate the new P:
P = 2695.2 + 2695.2(P/A, 4%, 2) = 2695.2 + 2695.2(1.886) = 7778.35
Therefore, the final payment is $7,778.35