Answer:
maximum stress is 2872.28 MPa
Explanation:
given data
radius of curvature = 3 ×
mm
crack length = 5.5 ×
mm
tensile stress = 150 MPa
to find out
maximum stress
solution
we know that maximum stress formula that is express as
......................1
here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack
so put here all value in equation 1 we get
σm = 2872.28 MPa
so maximum stress is 2872.28 MPa
Explanation:
Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)
The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)
Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current
I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches
R1 = (8 V)/(3 A) = 8/3 Ω
R2 = (8 V)/(4 A) = 2 Ω
R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω
V1 = V2 = V3 = 8 V
Answer:
Yes this claim is correct.
Explanation:
The shear stress at any point is proportional to the velocity gradient at any that point. Since the fluid that is in contact with the pipe wall shall have zero velocity due to no flow boundary condition and if we move small distance away from the wall the velocity will have a non zero value thus a maximum gradient will exist at the surface of the pipe hence correspondingly the shear stresses will also be maximum.
Heat can be diverted away from the area you want to cool using the refrigeration cycle, also known as a heat pump cycle. This is done by repeatedly compressing and expanding the working refrigerant (air, water, synthetic refrigerants, etc.) to change its pressure.
<h3>What is the cycle of a heat pump?</h3>
- In order to heat the air within a building, a heat pump warms the air outside by drawing heat from it and adding it to it. The following procedure is used to achieve this: A gas is created when liquid refrigerant absorbs heat from the ambient air in the "evaporator."
- The pressure buildup from the compressor raises the temperature of the refrigerant, just like it does with everything that is put under pressure. The refrigerant is a heated vapor, ranging in temperature from 120° to 140°F, when it exits the compressor.
- The chemical refrigerant, once transformed from a gas to a liquid state, has a remarkable capacity to absorb heat. The heat inside your house might be absorbed and released outside when the refrigerant undergoes a state shift as a result of compression and pressurization.
To learn more about Compressor refer to:
brainly.com/question/29345949
#SPJ4
Answer:
a table
Explanation:
because you can saw the table