1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

Answer:
a is a good answer
Explanation:
because most items whether clothes or things we eat with, are made with something natural and recycled
Answer:
Yes convection will always work faster and more efficiently.
Explanation:
When a gas or a liquid is heated, hot areas of the material flow and mix with the cool areas. ... Convection transfers heat over a distance faster than conduction. But ultimately conduction must transfer the heat from the gas to the other object, though molecular contact.
Answer:
Momentum, p = 5 kg-m/s
Explanation:
The magnitude of the momentum of an object is the product of its mass m and speed v i.e.
p = m v
Mass, m = 3 kg
Velocity, v = 1.5 m/s
So, momentum of this object is given by :

p = 4.5 kg-m/s
or
p = 5 kg-m/s
So, the magnitude of momentum is 5 kg-m/s. Hence, this is the required solution.
You would get a wrong calculaton which if you are doing an experiment it can mess with the results