Answer:
The frequency of the oscillations in terms of fo will be f2=fo/3
E xplanation:
T= 
=1:3
⇒f2=fo\3
Here frequency f is inversely poportional to square root of mass m.
so the value of remainder of frequency f2 and fo is equal to 1:3.
⇒
= 
⇒
= 1:3
⇒f2=
Answer:
Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.
Explanation:
The movement of the medium is different. In the longitudinal wave, the medium moves left to right, while in thee transverse wave, the medium moves vertically up and down. Longitudinal waves have a compression and rarefaction, while the transverse wave has a crest and a trough. Longitudinal waves have a pressure variation, transverse waves don't have pressure variation. Longitudinal waves can be propagated in solids, liquids and gases, transverse waves can only be propagated in solids and on the surfaces of liquids. Longitudinal waves have a change in density throughout the medium, transverse waves don't.
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz
Answer:
16.2 s
Explanation:
Given:
Δx = 525 m
v₀ = 0 m/s
a = 4.00 m/s²
Find: t
Δx = v₀ t + ½ at²
525 m = (0 m/s) t + ½ (4.00 m/s²) t²
t = 16.2 s
Answer: Physical changes in nature could then be erosion in a mountain, the melting of snow, and a river freezing over from the cold. Since none of these changes affect the chemical composition of the mountain, the snow, or the river, they are physical changes.
Explanation: