Answer:
(a) Length =136.58 m
(b) T=5995 N
Explanation:
for the glider in the back
T - 1900 = 700 a
for the glider in front
12000-T -1900 = 700a
add equations
12000-3800 = 1400 a
a=5.85 m/s^2
v^2 = v0^2 + 2 a x
40^2 = 2*5.85*x
Length =136.58 m
b) plug the a back into one of the previous formula
T - 1900 = 700*5.85
T=5995 N
Answer:
it is chemical reactivity (D)
Explanation:
it is because chemical properties are properties that can be measured and observed only when matter undergoes a change to become an entirely different kind of matter.Which they include Chemical reactivity,flammable,and the ability to rust.And Chemical reactivity is the ability of matter to react chemically with other substances.
(a) As the car is moving with constant velocity, it means the rate change of velocity does not change, therefore the average acceleration of the car is zero.
Thus, there is no acceleration, when velocity is constant.
(b) Average acceleration,

Here, v is final velocity and u is the initial velocity and
is the time interval.
As twelve seconds later, the car is halfway around the track and traveling in the opposite direction with the same speed, therefore

Thus, the average acceleration of the car is
in the direction to the left.
Answer: 0.85 meters (with and without sigfigs)
Explanation: To find the wavelength, you just have to switch around the equation for wave speed: v (wave speed) = λ (wavelength)*f (frequency) so λ (wavelength) = v (wave speed)/f (frequency). You don't have the wave speed but you can calculate it. Since wave speed is measured in meters/second or m/s, you just have to divide the amount of meters you were given by the amount of seconds. You will get 340 m/s. Next, you have to plug the values into the equation: λ (wavelength) = 340 m/s (wave speed)/400 Hz (frequency). The answer is 0.85 meters (seconds cancel) and has the correct number of significant figures.
Answer:
The new radius of the trajectory of the particle is four times the previous radius
Explanation:
In order to know what is the radius of the trajectory of the charged particle, if its speed is four times as fast, you take into account the following formula, which describes the radius of a charged particle in a magnetic field:
(1)
If the speed of the particle is for time as fast, that is, v' = 4v, you obtain, in the equation (1):

The new radius of the trajectory of the particle is four times the previous radius