Answer:
See explanation below
Explanation:
In this reaction we have the ethyl acetoacetate which is reacting with 2 eq of sodium etoxide. The sodium etoxide is a base and it usually behaves as a nucleophyle of many reactions. Therefore, it will atract all the acidics protons in a molecule.
In the case of the ethyl acetoacetate, the protons that are in the methylene group (CH3 - CO - CH2 - COOCH2CH3) are the more acidic protons, therefore the etoxide will substract these protons instead of the protons of the methyl groups. This is because those hydrogens (in the methylene group) are between two carbonile groups, which make them more available and acidic for any reaction. As we have 2 equivalents of etoxide, means that it will substract both of the hydrogen atoms there, and then, reacts with the Br - CH2CH2 - Br and form a product of an aldolic condensation.
The mechanism of this reaction to reach X is shown in the attached picture.
Answer:
8.66 g of Al₂O₃ will be produced
Explanation:
4Al (s) + 3O₂ (g) → 2Al₂O₃ (s)
This is the reaction.
Problem statement says, that the O₂ is in excess, so the limiting reactant is the Al. Let's determine the moles we used.
4.6 g / 26.98 g/mol = 0.170 moles
Ratio is 4:2.
4 moles of aluminum can produce 2 moles of Al₂O₃
0.170 moles of Al, may produce (0.170 .2)/ 4 = 0.085 moles
Let's convert the moles of Al₂O₃ to mass.
0.085 mol . 101.96 g/mol = 8.66 g
Answer: 5622.6g
Explanation:
Note: Kf for water is 1.86°C/m.
The simple calculation is in the attachment below.
Answer:
1.67 M
Explanation:
75.0 g *1 mol/180 g = (75/180) mol of glucose
250 mL = 0.250 L
(75/180)/0.250 = 1.67 mol/L =1.67 M