Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g
Answer: 323.61 g of
will be produced
Explanation:
The given balanced chemical reaction is :

According to stoichiometry :
2 moles of
require 1 mole of 
Thus 3.00 moles of
will require=
of 
Thus
is the limiting reagent as it limits the formation of product.
As 2 moles of
give = 2 moles of 
Thus 3.00 moles of
give =
of 
Mass of 
Thus 323.61 g of
will be produced from the given moles of both reactants.
Metalloids had properties that fall between those of metals and nonmetals (I believe that to be correct-.-)
Answer:
In order to find the molecular formula from an empirical formula you must find the ratio of their molecular masses.
We know that the molecular mass of the molecule is 70
gmol-1
. We can calculate the molar mass of
CH2
from the periodic table:
C=12.01
gmol−1
H=1.01
gmol−1
CH2 =14.03
gmol−1
Hence we can find the ratio:
14.03
70
≈
0.2
Answer:
Explanation:
It is easier if you convert the kelvin temperature into Celsius degrees:
- ºC = T - 273.15 = 150 - 273.15 = -123.15ºC
Now, you know that that is a very cold temperature. Thus, may be the oxygen is not gas any more but it changed to liquid . . . or solid?
You must search for the boiling point and melting (freezing) point of oxygen in tables or the internet. At standard pressure (about 1 atm) they are:
- Melting point: −218.79 °C,
- Boiling point: −182.962 °C
That means that:
- below -218.79ºC oxygen is solid (not our case).
- between -218.79ºC and -182.962ºC oxygen is liquid (not our case)
- over -182.962ºC oxygen is a gas. This is our case, because -123.15ºC is a higher temperature than -182.962ºC.
Hence, <em>the state of matter of oxygen at 150K</em>, and standard pressure, is gas.