Answer: The reaction is exothermic reaction as the energy of products is less than the energy of reactants.
Explanation: Exothermic reactions are defined as the reactions in which energy of the product is less than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Labeling of the parts in the diagram:
A represents the activation energy which is the energy required by reactants to cross the energy barrier to get converted to products.
E represents the potential energy of the reactants.
B represents the activated complex.
D represents the potential energy of the products.
C represents the total enthalpy change of the reaction, which comes out to be negative for exothermic reactions.

Hello, I would like to help you, but I really don't understand the question
Answer:
643g of methane will there be in the room
Explanation:
To solve this question we must, as first, find the volume of methane after 1h = 3600s. With the volume we can find the moles of methane using PV = nRT -<em>Assuming STP-</em>. With the moles and the molar mass of methane (16g/mol) we can find the mass of methane gas after 1 hour as follows:
<em>Volume Methane:</em>
3600s * (0.25L / s) = 900L Methane
<em>Moles methane:</em>
PV = nRT; PV / RT = n
<em>Where P = 1atm at STP, V is volume = 900L; R is gas constant = 0.082atmL/molK; T is absolute temperature = 273.15K at sTP</em>
Replacing:
PV / RT = n
1atm*900L / 0.082atmL/molK*273.15 = n
n = 40.18mol methane
<em>Mass methane:</em>
40.18 moles * (16g/mol) =
<h3>643g of methane will there be in the room</h3>
the Orange side will grow higher bc people on the blue side will eventually become over 65