Answer:
Explanation:
specific heat of granite s = .79 J / g / k
let the mass of granite = m
heat lost by granite = heat gained by water
heat lost = mass x specific heat x drop in temperature
= m x .79 x (80 - 20.45)
heat gained by water
= 3000 x 4.186 x (20.45- 20)
heat lost by granite = heat gained by water
m x .79 x 59.55 = 3000 x 4.186 x .45
m = 120.12 g .
Answer:
group 1, 2 and 3 tend to get rid of electrons and start to form compounds with groups 7, 6, and 5.
Explanation:
Answer:
0.581 L or 581 mL
Explanation:
As stated in the question, the combined gas law is (P1*V1/T1) = (P2*V2/T2)
Write down the amounts you are given.
V1 = 0.152 L (I was taught to always convert milliliters to liters)
P1 = 717 mmHg
T1 = 315 K
V2 = ?
P2 = 463 mmHg
T2 = 777 K
The variable that is being solved for is final volume. Fill in the combined gas law equation with the corresponding amounts and solve for V2.
(717 mmHg*0.152 L) / (315 K) = (463 mmHg*V2) / (777 K)
0.346 = (463*V2) / (777)
0.346*777 = (463*V2) / (777)*777
268.842 = 463*V2
268.842/463 = (463*V2)/463
V2 = 0.581
Pressure and volume are indirectly proportional. This checks out because the volume increased while pressure decreased. Volume and temperature are directly proportional. This checks out because both volume and temperature increased. This is a good way to check your answers. You can also solve each side of the combined gas law equation to see if they are both the same.
In your hand, the ball has higher potential energy than kinetic because it is still off of the ground but it isn't moving so there is no kinetic. As the ball rises, its potential and kinetic energy increases. At its peak, it has very high potential energy and very low kinetic energy. As it falls, the potential energy decreases but kinetic does not.