Answer:
Empirical and molecular formulas are the same, C₅H₁₀O₂.
Explanation:
Hello!
In this case, when determining the empirical and molecular formulas of organic compounds via combustion analysis, we first need to compute the moles of carbon and hydrogen via the yielded mass of carbon dioxide and water:

Next, we need to compute the mass of oxygen by subtracting the mass of carbon and hydrogen to the mass of the sample of the compound:

And consequently the moles:

Now, we need to divide the moles of each atom by the fewest moles, it in this case, those of oxygen to obtain the subscripts in the empirical formula:

Thus, the empirical formula, taken the nearest whole number is:

Now, if we divide the molar mass of the molecular formula (102.1 g/mol) by that of the empirical formula (102.1 g/mol) we infer they are both the same.
Best regards!
This process is called hydrogenation. It involves the conversion of oils that are liquid into semi-solid fats. Example products that makes use of this process is the margarine and shortenings. Hope this answers the question. Have a nice day.
Answer:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + H₂O
Explanation:
Chemical equation:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + H₂O
Balanced chemical equation:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + 2H₂O
The given reaction is double displacement reaction in which anion and cation of both reactant exchanged with each other. Calcium hydroxide react with sulfuric acid and form calcium sulfate and water.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AD +CB