The closest answer is
Alpha - mass of 4 and charge of +2; beta - no mass and charge of -1; gamma - no mass and no charge (consists of energy)
It’s not exactly correct because a beta particle has the (small) mass of an electron (also the positron). All other choices are way off, I’d go with this one.
The answer is 20. Frequency is "number of times" per unit time.
The smooth muscle in the wall of the bladder when stretched triggers the micturition reflex (urination).
<h3>What is a Bladder?</h3>
This is defined as a lined layers of muscle tissue that stretch to hold urine in organisms.
In older people the elasticity of the bladder is reduced which is why it makes it harder for them to hold urine for a long time.
Read more about Micturition here brainly.com/question/26493943
This is EXACTLY the same scenario as the skydiver jumping
out of the airplane, except the whole thing is turned on its side.
==> The skydiver leaves the airplane.
The force of gravity on him (his weight) makes him accelerate down.
But the air resists his downward motion.
The faster he falls, the more UPWARD force the air exerts on him.
The more upward force the air exerts, the less he accelerates down.
When his falling speed is great enough, he stops accelerating, and
falls with a constant speed. He calls that speed his 'terminal velocity'.
==> The submarine turns on its engines, at maximum power.
The force of the engines makes the sub accelerate forward.
But the water resists its forward motion.
The faster it moves, the more BACKWARD force the water exerts on it.
The more backward force the water exerts, the less it accelerates forward.
When the forward speed is great enough, it stops accelerating, and moves
with a constant speed. I don't know if they use the same term in submarines,
but you might say that speed is the 'terminal velocity' in water.
if α = 90°, then the formula simplifies to: hmax = h + V₀² / (2 * g) and the time of flight is the longest. ...
if α = 45°, then the equation may be written as: ...
if α = 0°, then vertical velocity is equal to 0 (Vy = 0), and that's the case of horizontal projectile motion.