Answer:
<em>The balloon is 66.62 m high</em>
Explanation:
<u>Combined Motion
</u>
The problem has a combination of constant-speed motion and vertical launch. The hot-air balloon is rising at a constant speed of 14 m/s. When the camera is dropped, it initially has the same speed as the balloon (vo=14 m/s). The camera has an upward movement for some time until it runs out of speed. Then, it falls to the ground. The height of an object that was launched from an initial height yo and speed vo is

The values are


We must find the values of t such that the height of the camera is 0 (when it hits the ground)


Multiplying by 2

Clearing the coefficient of 

Plugging in the given values, we reach to a second-degree equation

The equation has two roots, but we only keep the positive root

Once we know the time of flight of the camera, we use it to know the height of the balloon. The balloon has a constant speed vr and it already was 15 m high, thus the new height is



Answer:
Option c is correct
Explanation:
There are two types of collisions-elastic collision and inelastic collision.
In elastic collision, both kinetic energy and total momentum are conserved. On the other hand, in inelastic collision, total momentum is conserved but kinetic energy is not conserved. Thus, option b and d are incorrect.
Total energy is always conserved in both types. Thus, option a is incorrect.
In a perfectly inelastic collision, objects stick together. This happens because maximum kinetic energy is dissipated and used in bonding of the two objects. Thus, correct option is c.
Answer: 2
Explanation:
Each shell can contain only a fixed number of electrons: The first shell can hold up to two electrons, the second shell can hold up to eight (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on. The general formula is that the nth shell can in principle hold up to 2(n2) electrons.
Answer:
A) Distance
Explanation:
The shortest distance that is represented as the measurement from one point to another is called distance.
It should not be confused with displacement as it represents the sum of the distances travelled by a body or person.
Answer:
Both are only physical changes
Explanation:
A physical change is a change that does not involve or alter the chemical composition of the substances involved. Physical changes form no new substance and can be easily separated into individual constituents. Example of physical changes are change in state, boiling, melting etc.
According to this question, two processes were given as follows:
1. mixing chocolate syrup into milk
2. rain forming in a cloud
These two processes are similar in the sense that they are both examples of physical changes.