Answer:
both
Explanation:
because when it is hot in summer 5hat is the air and the sund u can warm things up and then it get hot
I would tell him, in the kindest, most gentle way I could manage,
to fahgeddaboudit.
The total amount of energy doesn't change. Energy is never created,
and it never disappears. If you have some energy, then it had to come
from somewhere, and if you used some energy, then it had to go
somewhere.
You can never get more energy out of the electromotor than you put into it,
and in the real world, you can't even get THAT much out, because some
of it is always used on the way through.
Pour yourself a cold glass of soda, then look up "Perpetual Motion" or
"Free Energy" on the internet, relax, and enjoy the show. They are all
fakes. They may not all be intentionally meant to fool you, but they are
all impossible.
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).
The answer is:
C. 361 m/s
The explanation:
To calculate the speed of sound at a given temperature (50°C) we are going to use this formula:
v = 331 + 0.6T
when V is the velocity
and T is the temperature = 50°C
by substitution:
v = 331 + 0.6(50)
v = 361 m/s
So, The correct answer is C.
because of the variation of the motion of the molecules of air with change of temperature so, the velocity (V) of the sound in the air is change with temperature.
The cliff is 2042 ft away.
We know that the speed of sound in air is directly proportional to the absolute temperature.
First convert the Fahrenheit temperature to Celsius;
°C = 5/9(44.5 - 32)
°C = 6.9 °C
Applying the formula;
V1/V2 = √T1/T2
Where; V1 = velocity of sound in air at 0°C
V2 = Velocity of sound in air at 6.9 °C
1087/V2 = √273/279.9
V2= 1101 ft/s
Given that; V = 2s/t
Where s is the distance of the cliff
t is the time taken
1101 ft/s = 2s/3.71 s
s = 1101 ft/s × 3.71 s/2
s = 2042 ft
Learn more:brainly.com/question/15381147