By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
<h3>How to solve a system of equations</h3>
In this question we have a system formed by a <em>linear</em> equation and a <em>non-linear</em> equation, both with no <em>trascendent</em> elements and whose solution can be found easily by algebraic handling:
x - y = 5 (1)
x² · y = 5 · x + 6 (2)
By (1):
y = x + 5
By substituting on (2):
x² · (x + 5) = 5 · x + 6
x³ + 5 · x² - 5 · x - 6 = 0
(x + 5.693) · (x - 1.430) · (x + 0.737) = 0
There are three solutions: x₁ ≈ 5.693, x₂ ≈ 1.430, x₃ ≈ - 0.737
And the y-values are found by evaluating on (1):
y = x + 5
x₁ ≈ 5.693
y₁ ≈ 10.693
x₂ ≈ 1.430
y₂ ≈ 6.430
x₃ ≈ - 0.737
y₃ ≈ 4.263
By applying algebraic handling on the two equations, we find the following three <em>solution</em> pairs: x₁ ≈ 5.693 ,y₁ ≈ 10.693; x₂ ≈ 1.430, y₂ ≈ 6.430; x₃ ≈ - 0.737, y₃ ≈ 4.263.
To learn more on nonlinear equations: brainly.com/question/20242917
#SPJ1
we know the x-intercept of the line is 1, recall that an x-intercept is when the graph intercepts or touches the x-axis, and when that happens, y = 0, so the point is really x = 1, y = 0, namely (1,0). We also know another point on the line, is (-2, 9).

Hello.
The answer is choice A. angle 1 = 118, angle 2 = 118
Explanation:
The four angles above are congruent (meaning the same) to the ones beneath.
Angles 1 and 2 are also congruent, so they will measure the same.
Lets label the angles above A, B, C, D. B being the known angle, which is 118°. The angles beneath can be labelled E, F, G, H.
∠B ≅ ∠D
∠ABCD ≅ ∠EFGH
∠BD ≅ ∠FH
FH (or 1 and 2) equal 118.
Answer:
P=646
R=5%
T=2yrs
I=?
I=PRT/100
I= 646*5*2/100
I= 64.6
Step-by-step explanation:
Is there like a question???