Answer:
10/30 is the fraction of the diagram shade
For this, we use simultaneous equations. Let George's page be g, Charlie's be c and Bill's page be b.
First, <span>George's page contains twice as many type words as Bill's.
Thus, g = 2b.
</span><span>Second, Bill's page contains 50 fewer words than Charlie's page.
Thus, b = c - 50.
</span>If each person can type 60 words per minute, after one minute (i.e. when 60 more words have been typed) <span>the difference between twice the number of words on bills page and the number of words on Charlie's page is 210.
We can express that as 2b - c = 210.
Now we need to find b, since it represents Bill's page.
We can substitute b for (c - 50) since b = c - 50, into the equation 2b - c = 210. This makes it 2(c - 50) - c = 210.
We can expand this to 2c - 100 - c = 210.
We can simplify this to c - 100 = 210.
Add 100 to both sides.
c - 100 + 100 = 210 + 100
Then simplify: c = 210 + 100 = 310.
Now that we know c, we can use the first equation to find b.
b = c - 50 = 310 - 50 = 260.
260 is your answer. I don't know where George comes into it. Maybe it's a red herring!</span>
Answer:
Option A. one rectangle and two triangles
Option E. one triangle and one trapezoid
Step-by-step explanation:
step 1
we know that
The area of the polygon can be decomposed into one rectangle and two triangles
see the attached figure N 1
therefore
Te area of the composite figure is equal to the area of one rectangle plus the area of two triangles
so
![A=(8)(4)+2[\frac{1}{2}((8)(4)]=32+32=64\ yd^2](https://tex.z-dn.net/?f=A%3D%288%29%284%29%2B2%5B%5Cfrac%7B1%7D%7B2%7D%28%288%29%284%29%5D%3D32%2B32%3D64%5C%20yd%5E2)
step 2
we know that
The area of the polygon can be decomposed into one triangle and one trapezoid
see the attached figure N 2
therefore
Te area of the composite figure is equal to the area of one triangle plus the area of one trapezoid
so

Answer:
C.) 63
Step-by-step explanation:
You know what you insisted on me answering, so I'll answer here.
35 ÷ 5 = 7
7 x 9 = 63