Answer:
El área de la placa es aproximadamente 5102.752 centímetros cuadrados.
Explanation:
Asumamos que el cambio dimensional como consecuencia de la temperatura es pequeña, entonces podemos estimar el área de la placa de cobre en función de la temperatura mediante la siguiente aproximación:
(1)
Donde:
- Ancho de la placa, en centímetros.
- Longitud de la placa, en centímetros.
- Coeficiente de dilatación, en
.
- Temperatura inicial, en grados Celsius.
- Temperatura final, en grados Celsius.
Si sabemos que
,
,
,
and
, entonces el área de la placa a la temperatura final:
![A_{f} = (65\,cm)\cdot (78\,cm)\cdot \left[1+\left(17\times 10^{-6}\,\frac{1}{^{\circ}C} \right)\cdot (400\,^{\circ}C-20\,^{\circ}C)\right]](https://tex.z-dn.net/?f=A_%7Bf%7D%20%3D%20%2865%5C%2Ccm%29%5Ccdot%20%2878%5C%2Ccm%29%5Ccdot%20%5Cleft%5B1%2B%5Cleft%2817%5Ctimes%2010%5E%7B-6%7D%5C%2C%5Cfrac%7B1%7D%7B%5E%7B%5Ccirc%7DC%7D%20%5Cright%29%5Ccdot%20%28400%5C%2C%5E%7B%5Ccirc%7DC-20%5C%2C%5E%7B%5Ccirc%7DC%29%5Cright%5D)

El área de la placa es aproximadamente 5102.752 centímetros cuadrados.
The earth
The earths mass is what generates the force to draw you in. The deeper you go, sorry the more above you the less the pull will be
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]
Drag from her armas would slow her down if she was spinning at a fast speed