WE CALCULATE POWER AND RATE OF DOING WORK IS CALLED POWER
Explanation:
It is given that,
Initially, the jogger is at rest u₁ = 0
He accelerates from rest to 4.86 m, v₁ = 4.86 m
Time, t₁ = 2.43 s
A car accelerates from u₂ = 20.6 to v₂ = 32.7 m/s in t₂ = 2.43 s
(a) Acceleration of the jogger :


a₁ = 2 m/s²
(b) Acceleration of the car,


a₂ = 4.97 m/s²
(c) Distance covered by the car,


d₁ = 5.904 m
Distance covered by the jogger,


d₂ = 64.73 m
The car further travel a distance of, d = 64.73 m - 5.904 m = 58.826 m
Hence, this is the required solution.
Answer: touch the pan to the burner
Explanation:
There are three modes of heat transfer:
conduction, convection and radiation.
For conduction, the heat transfers from a hot object to a cold object when the two are in contact.
For convection there is bulk motion of fluid occurs which transfers the heat.
For heat transfer by radiation, medium is not required.
Thus, to demonstrate conduction between pan and burner, the pan must touch the burner.
Answer:
A) ≥ 325Kpa
B) ( 265 < Pe < 325 ) Kpa
C) (94 < Pe < 265 )Kpa
D) Pe < 94 Kpa
Explanation:
Given data :
A large Tank : Pressures are at 400kPa and 450 K
Throat area = 4cm^2 , exit area = 5cm^2
<u>a) Determine the range of back pressures that the flow will be entirely subsonic</u>
The range of flow of back pressures that will make the flow entirely subsonic
will be ≥ 325Kpa
attached below is the detailed solution
<u>B) Have a shock wave</u>
The range of back pressures for there to be shock wave inside the nozzle
= ( 265 < Pe < 325 ) Kpa
attached below is a detailed solution
C) Have oblique shocks outside the exit
= (94 < Pe < 265 )Kpa
D) Have supersonic expansion waves outside the exit
= Pe < 94 Kpa
<span>P = energy/t = 0.0025/1E-8 = 250000 W
I(ave) = P/A = 250000/(pi*0.425E-3^2) = 4.4056732E11 W/m^2
I(peak) = 2I(ave) = 8.8113463E11 W/m^2
Electric field E = sqrt(I(peak)*Z0) = 1.8219499E7 V/m, where
free-space impedance Z0 = sqrt(µ0/e0) = 376.73031 ohms</span>