This question is incomplete, but I can do it for you, considering the equation to be *In its most famous form*:
A+B⇒C+D
A and B here are the reactants, while C and D are the products.
The reactants are generally the input materials in the beginning of any chemical reactions and they usually, if not always, are on the left hand side of the chemical equation. While the products are on the right hand side and are the final output of the chemical reaction.
Hope this helps.
U=0
<span>t=10 </span>
<span>a=9.8m/s/s </span>
<span>v is velocity (the tower must be very high to be able to fall for 10 seconds!!!) </span>
<span>you work out the result now</span>
A) We differentiate the expression for velocity to obtain an expression for acceleration:
v(t) = 1 - sin(2πt)
dv/dt = -2πcos(2πt)
a = -2πcos(2πt)
b) Any value of t can be plugged in as long as it is greater than or equal to 0.
c) we integrate the expression of velocity to find an expression for displacement:
∫v(t) dt = ∫ 1 - sin(2πt) dt
x(t) = t + cos(2πt)/2π + c
x(0) = 0
0 = = + cos(0)/2π + c
c = -1/2π
x(t) = t + cos(2πt)/2π -1/2π
Answer:
An example in which liquid pressure phenomena can be used in daily life is in Water blasting
Explanation:
Water blasting refers application of pressurized water to remove materials from the surface of objects.
There are different varieties of water blasting, including;
Hydrocleaning; Cleaning enabled by the use of high pressure water
Hydrodemolition; Demolition or removal of concrete using pressurized water
Hydrojetting; The spraying of water under pressure on surfaces in order to remove surface contaminants.
Temperature that will be my answer number 1