Answer:
Decreases the time period of revolution
Explanation:
The time period of Cygnus X-1 orbiting a massive star is 5.6 days.
The orbital velocity of a planet is given by the formula,
v = √[GM/(R + h)]
In the case of rotational motion, v = (R +h)ω
ω = √[GM/(R + h)] /(R +h)
Where 'ω' is the angular velocity of the planet
The time period of rotational motion is,
T = 2π/ω
By substitution,
<em>T = 2π(R +h)√[(R + h)/GM] </em>
Hence, from the above equation, if the mass of the star is greater, the gravitational force between them is greater. This would reduce the time period of revolution of the planet.
Answer:
The charge in each ball will be 3 * 10^-12 C
Explanation:
(Assuming the correct charge of the second ball is 8 * 10^-12)
When the balls are brought in contact, all the charges are split evenly among then.
So first we need to find the total charge combined:
(-3 * 10^-12) + (8 * 10^-12) + (4 * 10^-12) = 9 * 10^-12 C
Then, when the balls are separated, each ball will have one third of the total charge, so in the end they will have the same charge:
(9 * 10^-12) / 3 = 3 * 10^-12 C
So the charge in each ball will be 3 * 10^-12 C
To act as the Sun' was accepted but if you put 'sunlight' alone it was not accepted. The examiner wanted you to state that the infra red radiation was needed to warm up the water.