516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
By definition of energy efficiency, we derive an expression for the energy rate exhausted to the river (
), in megawatts:
(1)
Where:
- Efficiency.
- Electric power, in megawatts.
If we know that
and
, then the energy rate exhausted to the river is:


516.154 megawatts of heat are <em>exhausted</em> to the river that cools the plant.
We kindly to check this question on first law of thermodynamics: brainly.com/question/3808473
Answer:
<h3>30m</h3>
Explanation:
Velocity is the change of rate of displacement with respect to time.
velocity = displacement/time
Given
initial velocity = 15 m/s.
time taken =2 secs
Required
Displacement of the object
From the formula;
Displacement = Velocity * time
Displacement = 15 * 2
Displacement = 30m
<em>Hence the displacement of the object is 30m</em>
Earth's gravity pulls air as close to the surface as possible. As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense than air nearer to sea level.
Answer:
Explanation:
Displacement vector along x axes = 4.5 - 2.5 = 2 m
Displacement vector along y axes = 3 - 2 = 1 m
Displacement vector along z axis = 3.5- 4 = - 0.5 m
Displacement vector = 2 i + j - 0.5 k m