A biased example: Asking students who are in line to buy lunch
An unbiased example: Asking students who are leaving/going to lunch(<em>NOT buying </em><em>lunch</em><em />).
But in this case, the answer choices can be... confusing.
Don't panic! You're given numbers and, of course, your use of logic.
Answer choice A: 100 students grades 6-8
Answer choice B: 20-30 students any <em>one</em> grade<em></em><em>
</em>Answer choice C: 5 students
<em></em>Answer choice D: 50 students grade 8
An unbiased example would be to choose students from <em>any grade.</em> So we can eliminate choices B and D.
Now, the question wants to <em>estimate how many people at your middle school buy lunch.</em> This includes the whole entire school, and if you are going to be asking people, you aren't just going to assume that if 5 people out of 5 people you asked bought lunch, the whole school buys lunch.
So, to eliminate all bias and/or error by prediction, answer choice A, the most number of students, is your answer.
Sam started with 0 dollars in his bank account. He charged his debit card for a sandwich that costs $6.00. If this was written on a number line. How many units would Sam to go to get back to where he started?
30 minutes - 5 miles;
1 hour - 10 miles
10 hours - 100 miles ...
The independent value is plotted along the x- axis ( Hours ) and the dependent variable is plotted along the y-axis ( Miles ). Also:
3 months = 90 days
90 x 1/2 hours = 45 hours
Answer: The graph B ) ( or the second one ).
Answer:
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
Step-by-step explanation:
Let A represent snickers, B represent Twix and C represent Reese's Peanut Butter Cups.
Given;
N(A) = 150
N(B) = 204
N(C) = 206
N(A∩B) = 75
N(A∩C) = 100
N(B∩C) = 98
N(A∩B∩C) = 38
N(Total) = 500
How many students like Reese's Peanut Butter Cups or Snickers, but not Twix;
N(AUC∩B')
This can be derived by first finding;
N(AUC) = N(A) + N(C) - N(A∩C)
N(AUC) = 150+206-100 = 256
Also,
N(A∩B U B∩C) = N(A∩B) + N(B∩C) - N(A∩B∩C) = 75 + 98 - 38 = 135
N(AUC∩B') = N(AUC) - N(A∩B U B∩C) = 256-135 = 121
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
See attached venn diagram for clarity.
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is the shaded part
Answer:
the answer is 3
Step-by-step explanation: