Answer:
We can use heat = mcΔT to determine the amount of heat, but first we need to determine ΔT. Because the final temperature of the water is 55°C and the initial temperature is 20.0°C, ΔT is as follows:
ΔT = Tfinal − Tinitial = 55.0°C − 20.0°C = 35.0°C
given the specific heat of water as 1 cal/g·°C. Substitute the known values into heat = mcΔT and solve for amount of heat:
= heat=(75.0 g)(1 cal/ g· °C )(35.0°C) =
= 75x1x35=2625 cal
1 mm (millimeter) = 0.000001 km (kilometer)
12.5 mm = <span>0.0000125 km
1 mm = </span><span>0.00001 hm (hectometer)
12.5 mm = </span><span>0.000125 hm
1 mm = </span>0.001 m (meter)
12.5 mm = 0.0125 m
1 mm = 0.1 cm (centimeter)
12.5 mm = 1.25 cm
So the only one of the answer choices that doesn't equal 12.5 mm is 0.00125 hm, since 12.5 mm is <span>0.000125 hm.
Answer:
</span><span>0.00125 hm
</span><span>
Hope this helps!</span>
<span>Magnetic domain
Its speed can be slowed because the magnetic field can be turned on and off, can have its direction reversed and can have its strength changed. However, The speed of a magnetic field that is produced by a current is impossible to be slowed. </span>
OP already did it - CONGRATS!!
here are the steps 2 get the same ans:
(NH4)2 CO3 has 2x N, 8x H, 1x C and 3x O per molecule
so its molecular mass = 2x14 + 8x1 + 1x12 + 3x16
=28+8+12+48
=96g
of that 96g, 8x1=8g is due to Hydrogen
so by ratio n proportion, 1.00g will have 1x8/96 = 1/12g = 0.083g of H
An occluded front usually brings strong winds and heavy precipitation! =)