Answer:
80.7 L
Step-by-step explanation:
This looks like a case where we can use the Ideal Gas Law to calculate the volume.
pV = nRT Divide both sides by p
V = (nRT)/p
=====
Data:
n = 5.00 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = (120 +273.15) K = 393.15K
p = 1520 mmHg × 1 atm/760 mmHg = 2.00 atm
=====
Calculation:
V = (5.00 × 0.082 06 × 393.15)/2.00
V = 161.3/2.00
V = 80.7 L
Answer:
Part C: P2 = 0.30 atm
Part D: V1 = 16.22 L.
Explanation:
Part C:
Initial pressure (P1) = 2.67 atm
Initial volume (V1) = 5.54 mL
Final pressure (P2) =.?
Final volume (V2) = 49 mL
The final pressure (P2) can be obtained as follow:
P1V1 = P2V2
2.67 x 5.54 = P2 x 49
Divide both side by 49
P2 = (2.67 x 5.54)/49
P2 = 0.30 atm
Therefore, the final pressure (P2) is 0.30 atm
Part D:
Initial pressure (P1) = 348 Torr
Initial volume (V1) =?
Final pressure (P2) = 684 Torr
Final volume (V2) = 8.25 L
The initial volume (V1) can be obtained as follow:
P1V1 = P2V2
348 x V1 = 684 x 8.25
Divide both side by 348
V1 = (684 x 8.25)/348
V1 = 16.22 L
Therefore, the initial volume (V1) is 16.22 L
Answer:
The concentration of O2 will begin decreasing and The concentrations of CO2 and O2 will be equal.
Explanation:
Equilibrium occurs when the velocity of the formation of the products it's equal to the velocity of the formation of the reactants, thus the concentrations of the compounds remain constant.
Analyzing the information and the reaction given, we can notice that in equilibrium the rate (velocity) of formation of O2 (product) is equal to the rate of formation of CO2 (reactant).
As the CO2 and H2O are placed in the reaction, the Le Chateliêr's principle states that the equilibrium must shift to reestablish the equilibrium, thus, they must be consumed, and the concentration of O2 must increase.
As state above, in equilibrium, the concentrations didn't change, thus, the concentrations of CO2 and O2 will not change.
The concentrations of CO2 and O2 depends on the rate of the reaction and the initial quantities presented, so it's not possible to affirm they'll be equal.
Answer:
About 60.
Explanation:
Mendeleev knew of 63 elements. He wrote their properties on cards and arranged them in order of atomic mass.
That's how he discovered that the properties of elements are periodic functions of their atomic masses.