The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.
Answer:
Food has to be digested into smaller component nutrients that are then absorbed and used throughout your body. Calories in food provide your body with the energy it needs to complete vital processes such as cellular maintenance and reproduction, and respiration.
Explanation:
can i have a brainlist :)
Answer:
The volume will be 82.67 L
Explanation:
Charles's Law is the relationship between the volume and temperature of a certain amount of ideal gas. In this way, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

Having a certain volume of gas V1 that is at a temperature T1 at the beginning of the experiment, by varying the volume of gas to a new value V2, then the temperature will change to T2, and it will be true:

In this case, you know:
- V1= 40 L
- T1= 90 °C
- V2= ?
- T2= 186 °C
Replacing:

Solving:

V2= 82.67 L
<u><em>The volume will be 82.67 L</em></u>