Answer:
HCl
Explanation:
<em>Choices:</em>
<em>CO: 28.01g/mol</em>
<em>NO₂: 46g/mol</em>
<em>CH₄: 16.04g/mol</em>
<em>HCl: 36.4g/mol</em>
<em>CO₂: 44.01g/mol</em>
<em />
It is possible to identify a substance finding its molar mass (That is, the ratio between its mass in grams and its moles). It is possible to find the moles of the gas using general ideal gas law:
PV = nRT
<em>Where P is pressure of gas 0.764atm; V its volume, 0.279L; n moles; R gas constant: 0.082atmL/molK and T its absolute temperature, 295.85K (22.7°C + 273.15).</em>
Replacing:
PV = nRT
PV / RT = n
0.764atm*0.279L / 0.082atmL/molKₓ295.85K = n
<em>8.786x10⁻³ = moles of the gas</em>
<em />
As the mass of the gas is 0.320g; its molar mass is:
0.320g / 8.786x10⁻³moles = 36.4 g/mol
Based in the group of answer choices, the identity of the gas is:
<h3>HCl</h3>
<em />
 
        
             
        
        
        
Yes, because it comes from a one thing and spreads throughout the entire space. Similar to dripping foot coloring into a glass of water, or spraying air freshener.
        
             
        
        
        
Liquids have free and fast moving particles. Liquids do not take a specific shape unless they are enclosed such as in a bottle. Anyway, since they are free flowing when they freeze, their movement becomes very slow. Eventually the particles will not have room to move as they used to and will be held in one place. The particles are still moving but they are only shaking or vibrating in the same place. You can't even tell this movement is happening, and that is what happens when liquid freezes.
        
             
        
        
        
<h3><em><u>ᎪꪀsωꫀᏒ</u></em></h3>
even no = 3/6 = 1/2 
no. less than 5 = 4/6 = 2/3