Answer:
Condensation: 423.3 K
Freezing: 83.96 K
(this is all i could figure out :) hope it helps)
Answer:
N2H4 + 2H2O2 ---->N2 + 4H2O
Explanation:
N=2 N=2
H=6 ->8 H=2 ->8
O=2 -> 4 O=1 -> 4
Add coefficients to hydrogen peroxide on the left and water on the right, so that there is an equal number of hydrogens and oxygens.
Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />
The excretory system<span> is responsible for removing the </span>cellular waste through the lungs,skin,and kidneys<span>. </span>
Explanation:
- When a bond is formed by transfer of electrons from one atom to another then it results in the formation of an ionic bond.
An ionic bond is generally formed by a metal and a non-metal.
For example, lithium is an alkali metal with atomic number 3 and its electronic distribution is 2, 1.
And, chlorine is a non-metal with atomic number 17 and its electronic distribution is 2, 8, 7.
So, in order to complete their octet lithium needs to lose an electron and chlorine needs to gain an electron.
Hence, both of then on chemically combining together results in the formation of an ionic compound that is, lithium chloride (LiCl).
An ionic compound is formed by LiCl because lithium has donated its valence electron to the chlorine atom.
- On the other hand, if a bond is formed by sharing of electrons between the two chemically combining atoms then it is known as a covalent bond.
For example,
is a covalent compound as electrons are being shared by each oxygen atom.