Answer:
Hi there!
I believe you are missing an attachment to this question however
I strongly believe that the answer you are looking for is 85.
Explanation:
If you provide the graph, the rate of strokes in Asian women will be 17 per 1,000 women so all you have to do is multiply 17 by 5 and you get 85
The answer is <span>C.lithium (3), boron (5), and fluorine (9)</span>
Answer:
The answer is a compound.
it is a compound as it contains different elements
Explanation:
Answer:
2
Step-by-step explanation:
A. Moles before mixing
<em>Beaker I:
</em>
Moles of H⁺ = 0.100 L × 0.03 mol/1 L
= 3 × 10⁻³ mol
<em>Beaker II:
</em>
Beaker II is basic, because [H⁺] < 10⁻⁷ mol·L⁻¹.
H⁺][OH⁻] = 1 × 10⁻¹⁴ Divide each side by [H⁺]
[OH⁻] = (1 × 10⁻¹⁴)/[H⁺]
[OH⁻] = (1 × 10⁻¹⁴)/(1 × 10⁻¹²)
[OH⁻] = 0.01 mol·L⁻¹
Moles of OH⁻ = 0.100 L × 0.01 mol/1 L
= 1 × 10⁻³ mol
B. Moles after mixing
H⁺ + OH⁻ ⟶ H₂O
I/mol: 3 × 10⁻³ 1 × 10⁻³
C/mol: -1 × 10⁻³ -1 × 10⁻³
E/mol: 2 × 10⁻³ 0
You have more moles of acid than base, so the base will be completely neutralized when you mix the solutions.
You will end up with 2 × 10⁻³ mol of H⁺ in 200 mL of solution.
C. pH
[H⁺] = (2 × 10⁻³ mol)/(0.200 L)
= 1 × 10⁻² mol·L⁻¹
pH = -log[H⁺
]
= -log(1 × 10⁻²)
= 2
Explanation:
Ionization equation for
is as follows.

s s s
Now, the expression for the solubility product is as follows.
![K_{sp} = [Ca^{2+}][SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
= 
= 
As the concentration of
is given as 0.4 M.
So,
= 0.4 M
Putting the given values as follows.
![K_{sp} = [Ca^{2+}][SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![4.93 \times 10^{-5} = [Ca^{2+}] \times 0.4](https://tex.z-dn.net/?f=4.93%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%20%5Ctimes%200.4)
= 12.325 \times 10^{-5}[/tex]
Hence, the solubility of
in
is
.
Therefore, solubility of
in g/ml as follows.

= 0.0167 g/L
Thus, we can conclude that solubility of
is 0.0167 g/L.