Answer:
put the car on fire
Explanation:
if you put it on fire you would have a lot of light now
Answer:
Efficiency is the percent of work put into a machine by the user (input work) that becomes work done by the machine (output work).
Explanation:
It is a measure of how well a machine reduces friction.
Answer:
A) 
B) 
Explanation:
Given:
mass of car, 
A)
frequency of spring oscillation, 
We knkow the formula for spring oscillation frequency:




Now as we know that the springs are in parallel and their stiffness constant gets added up in parallel.
<u>So, the stiffness of each spring is (as they are identical):</u>



B)
given that 4 passengers of mass 70 kg each are in the car, then the oscillation frequency:



Answer:
huh? do you need help on math?
Explanation:
what do you mean?
The power of is series combination is Vn^2 times that of a parallel combination.
For series combination :
Req = R + R + R + ............... n times = nR
I = Δv/nr
Power = (Δv/nr)^2 × nr = Δv^2/nr
For parallel combination
1/req = 1/R + 1/R + 1/R +................(n times) = n/R
Req = R/n
Power = Δv/(R/n) = nΔv^2/R
Ratio = Δv^2/nr/n·Δv^2/R = 1/n^2
Hence, power of is series combination is Vn^2 times that of a parallel.
Learn more about parallel combination here:
brainly.com/question/12400458
#SPJ4