As we know that electrostatic force between two charges is given as

here we know that electrostatic repulsion force is balanced by the gravitational force between them
so here force of attraction due to gravitation is given as

here we can assume that both will have equal charge of magnitude "q"
now we have



now we have

The strong nuclear force holds the nucleus of an atom together.
Somehow, it overcomes the electrical force of repulsion between protons in the nucleus, which all have the same charge but still stay close together somehow. (b)
Answer:
Study hard , focus on your studies and alyways ask questions .
Answer:
C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of Fr.
Explanation:
Yo want to prove the following equation:

That is, the net force exerted on an object is equal to the change in the kinetic energy of the object.
The previous equation is also equal to:
(1)
m: mass of the block
vf: final velocity
v_o: initial velocity
Ff: friction force
F(x): Force
x: distance
You know the values of vf, m and x.
In order to prove the equation (1) it is necessary that you have C The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F. Thus you can calculate experimentally both sides of the equation.