An atom gains an electron from another atom. Hence, option B is the correct answer.
<h3>What is an atom?</h3>
An atom is a particle of matter that uniquely defines a chemical element. An atom consists of a central nucleus that is usually surrounded by one or more electrons.
When an atom shares electrons with another atom then it results in the formation of a covalent bond.
Whereas when an atom transfer electrons from one atom to another then it results in the formation of an ionic bond.
When the nucleus of an atom splits then it represents a nuclear fission reaction and energy is released during this process.
Hence, option B is the correct answer.
Learn more about the atom here:
brainly.com/question/1566330
#SPJ1
Answer:
Explanation:
Structure of the 2,2,4,4-tetramethyl-3-pentanone is give in the attachment
In 2,2,4,4-tetramethyl-3-pentanone, no alpha hydrogen is present, therefore, enol form is not possible and hence, exist only in keto form.
Explanation for existence of cyclohexa-2,4-diene-1-one only in enol form:
keto form of cyclohexa-2,4-diene-1-one not aromatic and hence less stable.
Whereas enol form it is aromatic which makes it highly stable. that's why cyclohexa-2,4-diene-1-one exists only in enol form.
The complete balanced chemical
equation is:
4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g)
In statement form: 4mol NH3 reacts with 5 mol O2 to produce 6
mol H2O
First let us find for the limiting reactant:
>molar mass NH3 = 17 g/mol
moles NH3 = 54/17 = 3.18 mol NH3
This will react with 3.18*5/4 = 3.97 mol O2
>molar mass O2 = 32g/mol
moles O2 = 54/32 = 1.69 mol O2
We have insufficient O2 therefore this is the limiting
reactant
From the balanced equation:
For every 5.0 mol O2, we get 6.0 mol H2O, therefore
moles H2O formed = 1.69
mol O2 * 6/5 = 2.025 mol
Molar mass H2O = 18g/mol
<span>mass H2O formed = 2.025*18 = 36.45 grams H2O produced</span>
Explanation:
Equation of the reaction:
Br2(l) + Cl2(g) --> 2BrCl(g)
The enthalpy change for this reaction will be equal to twice the standard enthalpy change of formation for bromine monochloride, BrCl.
The standard enthalpy change of formation for a compound,
ΔH°f, is the change in enthalpy when one mole of that compound is formed from its constituent elements in their standard state at a pressure of 1 atm.
This means that the standard enthalpy change of formation will correspond to the change in enthalpy associated with this reaction
1/2Br2(g) + 1/2Cl2(g) → BrCl(g)
Here, ΔH°rxn = ΔH°f
This means that the enthalpy change for this reaction will be twice the value of ΔH°f = 2 moles BrCl
Using Hess' law,
ΔH°f = total energy of reactant - total energy of product
= (1/2 * (+112) + 1/2 * (+121)) - 14.7
= 101.8 kJ/mol
ΔH°rxn = 101.8 kJ/mol.
Group names in the periodic table give clues about the metallic properties of the elements.
Metallic elements are found on the left side of the periodic table. A simple conception of metals describes them as a lattice of positive ions immersed in a sea of electrons.