The unit of mass is 'Kilogram' which is written as 'kg' and volume, v = 10 L.
<h3>Equation :</h3>
To calculate the volume
Use formula,
density = mass / volume
density = 100 kg/L
mass = 1000 kg
volume = mass / density
v = 1000/100
v = 10 L
<h3>What is density mass?</h3>
A substance, material, or object's mass density is a measure of how much mass (or how many particles) it has in relation to the volume it occupies.
To know more about volume :
brainly.com/question/1578538
#SPJ9
I understand the question you are looking for :
If you have a density of 100 kg/L, and a mass of 1000 units, tell me the following: First what are the mass units? Secondly, what is the volume?
Answer is: Ksp for silver sulfide is 8.00·10⁻⁴⁸.
Reaction
of dissociation: Ag₂S(s) → 2Ag⁺(aq) + S²⁻(aq)<span>.
</span>s(Ag₂S) = s(S²⁻) = 1.26·10⁻¹⁶ M.
s(Ag⁺) = 2s(Ag₂S) = 2.52·10⁻¹⁶ M; equilibrium concentration of silver cations.
Ksp = s(Ag⁺)² · s(S²⁻).
Ksp = (2.52·10⁻¹⁶ M)² · 1.26·10⁻¹⁶ M.
Ksp = 6.35·10⁻³² M² · 1.26·10⁻¹⁶ M.
Ksp = 8.00·10⁻⁴⁸ M³.
Answer: 0.405g
Explanation:
Molar Mass of Be = 9g/mol
Number of mole of Be = 0.045mol
Mass conc. Of Be = 0.045 x 9 = 0.405g
Answer:
It will be reported too low.
Explanation:
To measure the specific heat of the metal (s), the calorimeter may be used. In it, the metal will exchange heat with the water, and they will reach thermal equilibrium. Because it can be considered an isolated system (there're aren't dissipations) the total amount of heat (lost by metal + gained by water) must be 0.
Qmetal + Qwater = 0
Qmetal = -Qwater
The heat is the mass multiplied by the specific heat multiplied by the temperature change. If c is the specific heat of the water:
m_metal*s*ΔT_metal = - m_water *c*ΔT_water
s = -m_water *c*ΔT_water / m_metal*ΔT_metal
So, if m_water is now less than it was supposed to be, s will be reported too low, because they are directly proportional.