I think the answer is like 0.15¢ assuming the way to solve it is to divide the cost by the Oz per pkg which is 48 so 6.99/48 is 0.15¢ rounded
Answer: The building would be 11 inches wide
Step-by-step explanation:
Answer:
a proportional relationship exists if the ratio of values is a constant
Step-by-step explanation:
The equation describing a proportional relationship is ...
y = kx
If you are given a table of values of x and y, they will be proportional if ...
y/x = k
for all (x, y) pairs.
Answer:
Expression for area = 3x² - 15x - 42
Step-by-step explanation:
Given that:
Length of rectangle desktop = 3(x+2) = 3x+6 units
Width of rectangle desktop = x - 7
Area of rectangle desktop = Length * Width
Area of desktop = (3x+6)(x-7)
Area = 3x(x-7) +6(x-7)
Area = 3x² - 21x + 6x - 42
Area = 3x² - 15x - 42
Hence,
Expression for area = 3x² - 15x - 42
so change a value to a percentage format, we simply divide it by 100.
for example, 2% can be rewritten as 2/100 or 0.02 in decimal format.
now, let's first convert the mixed fraction to improper, and then do the percentage format and simplification.
![\bf \stackrel{mixed}{3\frac{1}{8}}\implies \cfrac{3\cdot 8+1}{8}\implies \stackrel{improper}{\cfrac{25}{8}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{~~\frac{25}{8}~~}{100}\implies \cfrac{~~\frac{25}{8}~~}{\frac{100}{1}}\implies \cfrac{25}{8}\cdot \cfrac{1}{100}\implies \cfrac{1}{8}\cdot \cfrac{25}{100}\implies \cfrac{1}{8}\cdot \cfrac{1}{4}\implies \cfrac{1}{32}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B1%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%208%2B1%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B~~%5Cfrac%7B25%7D%7B8%7D~~%7D%7B100%7D%5Cimplies%20%5Ccfrac%7B~~%5Cfrac%7B25%7D%7B8%7D~~%7D%7B%5Cfrac%7B100%7D%7B1%7D%7D%5Cimplies%20%5Ccfrac%7B25%7D%7B8%7D%5Ccdot%20%5Ccfrac%7B1%7D%7B100%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%7D%5Ccdot%20%5Ccfrac%7B25%7D%7B100%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%7D%5Ccdot%20%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B32%7D%20)