1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
4 years ago
14

Simplify. Your answer should contain only positive exponents with no fractional exponents in the denominator.

Mathematics
1 answer:
mart [117]4 years ago
5 0

Answer:

\dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{4y^{2}}.

Step-by-step explanation:

The given expression is  

\dfrac{3y^{\frac{1}{4}}}{4x^{-\frac{2}{3}}y^{\frac{3}{2}}\cdot 3y^{\frac{1}{2}}}

We need to simplify the expression such that answer should contain only positive exponents with no fractional exponents in the denominator.

Using properties of exponents, we get

\dfrac{3}{4\cdot 3}\cdot \dfrac{y^{\frac{1}{4}}}{x^{-\frac{2}{3}}y^{\frac{3}{2}+\frac{1}{2}}}    [\because a^ma^n=a^{m+n}]

\dfrac{1}{4}\cdot \dfrac{y^{\frac{1}{4}}}{x^{-\frac{2}{3}}y^{2}}

\dfrac{1}{4}\cdot \dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{y^{2}}         [\because a^{-n}=\dfrac{1}{a^n}]

\dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{4y^{2}}

We can not simplify further because on further simplification we get negative exponents in numerator or fractional exponents in the denominator.

Therefore, the required expression is \dfrac{x^{\frac{2}{3}}y^{\frac{1}{4}}}{4y^{2}}.

You might be interested in
Trig proofs with Pythagorean Identities.
lorasvet [3.4K]

To prove:

$\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x}=2 \cot ^{2} x+1

Solution:

$LHS = \frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x}

Multiply first term by \frac{1+cos x}{1+cos x} and second term by \frac{1-cos x}{1-cos x}.

        $= \frac{1(1+\cos x)}{(1-\cos x)(1+\cos x)}-\frac{\cos x(1-\cos x)}{(1+\cos x)(1-\cos x)}

Using the identity: (a-b)(a+b)=(a^2-b^2)

        $= \frac{1+\cos x}{(1^2-\cos^2 x)}-\frac{\cos x-\cos^2 x}{(1^2-\cos^2 x)}

Denominators are same, you can subtract the fractions.

       $= \frac{1+\cos x-\cos x+\cos^2 x}{(1^2-\cos^2 x)}

Using the identity: 1-\cos ^{2}(x)=\sin ^{2}(x)

       $= \frac{1+\cos^2 x}{\sin^2x}

Using the identity: 1=\cos ^{2}(x)+\sin ^{2}(x)

       $=\frac{\cos ^{2}x+\cos ^{2}x+\sin ^{2}x}{\sin ^{2}x}

       $=\frac{\sin ^{2}x+2 \cos ^{2}x}{\sin ^{2}x} ------------ (1)

RHS=2 \cot ^{2} x+1

Using the identity: \cot (x)=\frac{\cos (x)}{\sin (x)}

        $=1+2\left(\frac{\cos x}{\sin x}\right)^{2}

       $=1+2\frac{\cos^{2} x}{\sin^{2} x}

       $=\frac{\sin^2 x + 2\cos^{2} x}{\sin^2 x} ------------ (2)

Equation (1) = Equation (2)

LHS = RHS

$\frac{1}{1-\cos x}-\frac{\cos x}{1+\cos x}=2 \cot ^{2} x+1

Hence proved.

5 0
4 years ago
A Y U D E N P O R F A :(
madam [21]

Answer:

x=2

Step-by-step explanation:

Primero, necesitamos calcular <<a>>

Sabemos que AD=BC y AB=CD porque lados opuestos congruentes

Entonces, vamos a calcular <<a>>.

Usamos AD y BC

2a-1=4a-15

suma 15 a ambos lados

2a+14=4

añada 2 en ambos lados

14=2a

divida

7=a

Ahora, usamos esta información para calcular <<x>>

Usamos CD=AB

2a-8=4x-2

pero sabemos que <<a>> es 7

entonces:

14-8=4x-2

6=4x-2

8=4x

2=x

<<x>> es 2

(¡lo siento mi español no es perfecto!

8 0
3 years ago
An example of consecutive odd integers is 23, 25, 27, and 29. Find four consecutive odd integers with a sum of 160. Show your wo
Andrew [12]
Step1: Define an odd integer.
Define the first odd integer as (2n + 1), for n = 0,1,2, ...,
Note that n is an integer that takes values 0,1,2, and so no.

Step 2: Create four consecutive odd integers.
Multiplying n by 2 guarantees that 2n will be zero or an even number.
Therefore (2n + 1) is guaranteed to be an odd number.
By adding 2 to the odd integer (2n+1), the next number (2n+3) will also be an odd integer.

Let the four consecutive odd integers be
2n+1, 2n +3, 2n +5, 2n +7 

Step 3: require that the four consecutive integers sum to 160.
Because the sum of the four consecutive odd integers is 160, therefore
2n+1 + 2n+3 + 2n+5 + 2n +7 = 160
8n + 16 = 160
8n = 144
n = 18

Because 2n = 36, the four consecutive odd integers are 37, 39, 41, 43.

Answer: 37,39,41,43

8 0
3 years ago
HELPPP !my teacher gave us 2 minutes?
matrenka [14]

Answer:  the fraction form is 331/500

Step-by-step explanation:

3 0
3 years ago
Which phrase describes the variable expression z+ 8?
grigory [225]

Answer:

D

Step-by-step explanation:

In math increased means that you are adding.

Have a good day and a good rest of your week!

8 0
3 years ago
Other questions:
  • The Great Pyramid in Giza, Egypt, is a square pyramid. The dimensions of the pyramid at the time of its completion are shown in
    8·1 answer
  • What is the quotient of 35,423 ũ 15?
    7·1 answer
  • A local university has 2.815 Hispanic students out of a total student population of 20.250. Do the Hispanic students have propor
    10·1 answer
  • Catherine says that you can use the fact 24÷4=6 to find 240÷4.
    13·1 answer
  • What are the dimensions of the poster at one-half its current size?
    10·1 answer
  • Which algebraic expression represents this word description?
    5·1 answer
  • All corners are right angles.
    8·1 answer
  • Which sets of values belongs to the domain and range of a relation
    5·1 answer
  • Plz help I need quick answer​
    11·1 answer
  • Does anyone know this?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!