Answer:
540 ft^2.
Step-by-step explanation:
The area of the trapezoid = h/2 (10 + 18) = 14h.
By Pythagoras the height h = √(5^2 - 4^2) = 3.
So the area of the 2 trapezoidal bases = 2 * 14*3
= 84 ft^2.
Now we calculate the area of the four lateral rectangular sides:
= 10*12 + 18*12 + 2*5*12
= 456 ft^2.
Total area = 456 + 54
= 540 ft^2.
Using f(x) = y, we know that a graph of the function contains the (x,y) points (2,5) and (6,-1). first find the slope of that line,
m = (y2 - y1)/(x2 - x1) ⇒ -6/4⇒-3/2
then using either point (I'll use the first one) solve for b in y = mx + b.
5 = (-3/2)(2) + b⇒ 5 = -3 + b⇒ 8 = b.
So y = (-3/2)x + 8 ⇒ f(x) = (-3/2)x + 8.
Answer:
(328i + 82) / 17
Step-by-step explanation:
`(2i(4+5i)(4-5i))/(4+i)
= (2i(16 - 25i^2)) / (4 + i)
= (2i( 16 + 25) )) / (4 + 1) [Note:- i^2 = -1]
= 82i / (4 + i)
= 82i(4 - i) / (4 + i)(4 - 1)
= 328i + 82 / (16 - i^2)
= (328i + 82) / 17