Answer:
Suppose that at a given point along a capillary, the following forces exist: Capillary hydrostatic pressure (HPc) = 30 mmHg Interstitial fluid hydrostatic pressure (HPif) = 0 mmHg Capillary colloid osmotic pressure (OPc) = 25 mmHg Interstitial fluid colloid osmotic pressure (OPif) = 2 mmHg. The net filtration pressure at this point in the capillary is <u>7mmHg.</u>
Explanation:
Capillary hydrostatic pressure (HPc) = 30 mmHg
Interstitial fluid hydrostatic pressure (HPif) = 0 mmHg
Capillary colloid osmotic pressure (OPc) = 25 mmHg
Interstitial fluid colloid osmotic pressure (OPif) = 2 mmHg
Net filtration pressure= hydrostatic pressure gradient - Oncotic pressure gradient
Hydrostatic pressure gradient = Capillary hydrostatic pressure - Interstitial hydrostatic pressure = 30mmHg - 0 mmHg = 30 mmHg
Oncotic pressure gradient = Capillary colloid osmotic pressure - Interstitial fluid colloid osmotic pressure =25 - 2 = 23 mmHg
Net filtration pressure= hydrostatic pressure gradient - Oncotic pressure gradient = 30 mmHg - 23 mmHg = 7 mmHg.
Hence, The net filtration pressure at this point in the capillary is <u>7mmHg.</u>
Answer:
It prevents their species from going extinct.
<h3><u>Answer;</u></h3>
It was developed by many scientists over many decades.
<h3><u>
Explanation;</u></h3>
- DNA is a type of nucleic acid that contains two long, twisted strands, known as double helix, that contain complementary genetic information.
- A gene is a segment of DNA that is passed down from parents to children and confers a trait to the offspring.
- The traits an organism displays are ultimately determined by the genes it inherited from its parents, known as genotype.
- Our understanding of DNA and inherited traits has changed over time since it has been continuously developed by many scientists over may decades.
It is true that it is possible for a population to not evolve for a while.
There is something called the Hardy-Weinberg theorem, which characterizes the distributions of genotype frequencies in populations that are not evolving.
There are 5 Hardy-Weinberg assumptions:
- no mutation
- random mating
- no gene flow
- infinite population size
- and no selection (natural nor forced).
You can see that some of these are kinda extreme and really hard to get, but with approximations, we can work.
For example, instead of an "infinite population size" we have enough with a really large population, such that genetic drift is negligible.
Concluding, yes, it is possible (but really difficult) for a population to not evolve for a while (at least, in nature), as long as the 5 assumptions above are met.
If you want to learn more, you can read:
brainly.com/question/19431143