1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
3 years ago
11

A 1.2 x10 3 kilogram automobile in motion strikes a 1.0 x 10 -4 kilogram insect as a result the insect is accelerated at a rate

of 1.0 x 10 2 meters per second 2 what is the magnitude of the force the insect exerts on the car
Physics
1 answer:
Mariana [72]3 years ago
6 0
According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:
F=ma
where F is the magnitude of the force, m is the mass of the object and a its acceleration.

In this problem, the object is the insect, with mass m=1.0 \cdot 10^{-4} kg. The acceleration of the insect is a=1.0 \cdot 10^2 m/s^2, therefore we can calculate the force exerted by the car on the insect:
F=ma=(1.0 \cdot 10^{-4} kg)(1.0 \cdot 10^2 m/s^2)=0.01 N

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
You might be interested in
In the lab downstairs physics majors use a rotating mirror to measure the speed of light within a few percent of the actual valu
iris [78.8K]

The number of complete cycles the rotating mirror goes through before the angular velocity gets to zero is approximately 1166.8 revs

<h3>What is angular velocity?</h3>

Angular velocity is the ratio of the angle turned to the time taken.

The kinematic equation for angular velocity are presented as follows;

ω = ω₀ + α·t

θ = θ₀ + ω₀·t + 0.5·α·t²

Where;

θ₀ = The initial angle turned = 0

ω₀ = The initial angular velocity of the mirrors = 115 rad/s clockwise

α = The angular acceleration = (115  - (-115))rad/s/(85 s) = -46/17 m/s²

t = The duration of the motion;

When the angular velocity, ω is zero, we get;

0 = 115 - 46/17·t

t = 85/2

Which indicates;

θ = 0 + 115× (85/2) + 0.5×(46/17) ×(85/2)² = 7331.25

θ = 7331.25 radians

θ = 7331.25/(2×π) ≈ 1166.8 rev

The mirrors would have turned through approximately 1166.8 revolutions when the angular gets to zero

Learn more about angular velocity and acceleration here:

brainly.com/question/13014974

#SPJ1

7 0
11 months ago
Calculate the heat, in kilocalories, that is absorbed if 183 g of ice at 0.0 ∘C is placed in an ice bag, melts, and warms to bod
boyakko [2]

Answer:

The total amount of heat needed will be Q_T=21.411kcal.

Explanation:

We will divide the calculation in two: First, the heat needed to melt the ice, and then the heat needed to warm the resulting liquid from 0°C to 37°C.

m=183g

l_f=80\frac{cal}{g} =334\frac{J}{g}

l_w=1\frac{cal}{g} =4.184\frac{J}{g}

<em>i) </em>The fusion heat will be:

Q_f=l_fm=14640cal=14.640kcal

<em>ii)</em> The heat needed to warm the water from T_i=0^{\circ}C to T_i=37^{\circ}C will be:

Q_w=l_wm(T_f-T_i)=6771cal=6.771kcal

So, the total amount needed will be the sum of these two results:

Q_T=Q_f+Q_w=14.640kcal+6.771kcal=21.411kcal.

8 0
3 years ago
Two pieces of amber are hung from threads. Piece A is charged by rubbing piece A with fur. Piece B is charged by rubbing piece B
PIT_PIT [208]

Answer:

ieces A and B must also have the same type of charges

Explanation:

In electrostatics, charges of the same sign repel and charges of different signs attract.

If we apply this to our case, we have that part A and C repel each other, therefore they have the same type of charge.

Also part A and C repel each other, therefore they have the same type of charge.

If we use the transitive property of mathematics, pieces A and B must also have the same type of charges

6 0
2 years ago
At one point in a pipeline, the water's speed is 3.57 m/s and the gauge pressure is 68.7 kPa. Find the gauge pressure at a secon
ArbitrLikvidat [17]

Answer:

The  pressure at point 2 is P_2  = 254.01 kPa

Explanation:

From the question we are told that

   The speed at point 1  is  v_1  =  3.57 \ m/s

   The  gauge pressure at point 1  is  P_1  =  68.7kPa =  68.7*10^{3}\  Pa

    The density of water is  \rho  = 1000 \ kg/m^3

Let the  height at point 1 be  h_1 then the height at point two will be

      h_2  =  h_1  -  18.5

Let the  diameter at point 1 be  d_1 then the diameter at point two will be

      d_2  =  2 * d_1

Now the continuity equation is mathematically represented as  

         A_1 v_1  =  A_2 v_2

Here A_1 , A_2  are the area at point 1 and 2

    Now given that the are is directly proportional to the square of the diameter [i.e A=  \frac{\pi d^2}{4}]

   which can represent as

             A \ \  \alpha \ \  d^2

=>         A = c   d^2

where c is a constant

  so      \frac{A_1}{d_1^2}  =  \frac{A_2}{d_2^2}

=>          \frac{A_1}{d_1^2}  =  \frac{A_2}{4d_1^2}

=>        A_2  =  4 A_1

Now from the continuity equation

        A_1  v_1  =  4 A_1 v_2

=>     v_2  =  \frac{v_1}{4}

=>     v_2  =  \frac{3.57}{4}

       v_2  =  0.893 \  m/s

Generally the Bernoulli equation is mathematically represented as

       P_1 + \frac{1}{2}  \rho v_1^2 +  \rho *  g * h_1  =  P_2 + \frac{1}{2}  \rho v_2^2 +  \rho *  g * h_2

So  

         P_2  =  \rho  * g  (h_1 -h_2 )+P_1  +  \frac{1}{2}  *  \rho (v_1^2 -v_2 ^2 )  

=>    P_2  =  \rho  * g  (h_1 -(h_1 -18.3)  + P_1  +  \frac{1}{2}  *  \rho (v_1^2 -v_2 ^2 )

substituting values

        P_2  =  1000  * 9.8  (18.3) )+ 68.7*10^{3}  +  \frac{1}{2}  *  1000 ((3.57)^2 -0.893 ^2 )

       P_2  = 254.01 kPa

 

8 0
2 years ago
A catapult with a spring constant of 10,000 N/m is used to launch a target from the deck of a ship. The spring is compressed a d
Mnenie [13.5K]

Answer:

(C) 40m/s

Explanation:

Given;

spring constant of the catapult, k = 10,000 N/m

compression of the spring, x = 0.5 m

mass of the launched object, m = 1.56 kg

Apply the principle of conservation of energy;

Elastic potential energy of the catapult = kinetic energy of the target launched.

¹/₂kx² = ¹/₂mv²

where;

v is the target's  velocity as it leaves the catapult

kx² = mv²

v² = kx² / m

v² = (10000 x 0.5²) / (1.56)

v² = 1602.56

v = √1602.56

v = 40.03 m/s

v ≅ 40 m/s

Therefore, the target's velocity as it leaves the spring is 40 m/s

6 0
2 years ago
Other questions:
  • Identify a wave that speeds up when it passes from air to water as well as one that slows down
    7·1 answer
  • The ___of a wave is the number of wavelengths that pass a fixed point in a second.
    7·1 answer
  • The closeness of measured values to an accepted value is the BLANK of the data ?
    14·1 answer
  • A cheetah can run at approximately 100 km/hr and a gazelle at 80 km/hr. If both animals are running at full speed, with a gazell
    8·1 answer
  • You are exploring a newly discovered planet. The radius of the planet is 7.50 × 107 m. You suspend a lead weight from the lower
    5·1 answer
  • In the process of electricity, what flows through the wires?
    9·1 answer
  • Arigid body must rotate about an axis in order for it to have angular momentum about that axis. True False
    8·1 answer
  • A dump truck contains a load of soil. Which action will INCREASE the dump
    5·2 answers
  • The time for a sound wave to travel between two people is 0.80 s,
    11·1 answer
  • What does energy and Newton's Laws (all three) have to do with roller coasters?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!