Answer:
From shortest wavelength to longest wavelength:
Gamma Rays
X-Rays
Ultraviolet
Visible Light
Infrared waves
Microwaves
Radio Waves
Explanation:
Answer:
F = - 2 A x - B
Explanation:
The force and potential energy are related by the expression
F = - dU / dx i ^ -dU / dy j ^ - dU / dz k ^
Where i ^, j ^, k ^ are the unit vectors on the x and z axis
The potential they give us is
U (x) = A x² + B x + C
Let's calculate the derivatives
dU / dx = A 2x + B + 0
The other derivatives are zero because the potential does not depend on these variables.
Let's calculate the strength
F = - 2 A x - B
Answer:
Average velocity is 0.296 m/s.
Average speed is 4.0 m/s.
Explanation:
Given:
Distance of the circular track is, 
Number of laps ran is, 
Time taken for the run is, 
Now, total distance covered in 5.4 laps = 
Also, since the path is a circle, the final position of the athlete after 5.4 laps will be 0.4 of 400 m ahead of the starting point.
Distance covered in 0.4 laps is, 
Therefore, the displacement of the athlete will be 160 m as the athlete is 160 m ahead of the starting point and displacement depends on the initial and final points only.
Now, average velocity is given as:

Average speed is the ratio of total distance covered to total time taken.
So, average speed = 
Answer:
97 s
Explanation:
Given:
Δx = 9600 m
v₀ = 198 m/s
v = 0 m/s
Find: t
Δx = ½ (v + v₀) t
9600 m = ½ (0 m/s + 198 m/s) t
t = 97 s
Given the mass of R-134a m = 300kg; Volume of the container V = 9 cu. meter; Temperature of R-134a T = 10 degrees Celsius;
Formula of specific volume : v = V / m = 9 / 300 = 0.03 cu. m / kg.
At T = 10 degrees Celsius from saturated R-134a tables, vf = 0.0007930 cu. m /kg; vg = 0.049403 cu. m/kg. We know v = vf + x (vg - vf), so 0.03 = 0.0007930 + x (0.049403 - 0.0007930), which makes x = 0.601.
Specific enthalpy of R-134a in the container is h = hf + x*hfg = 65.43 + (0.601 * 190.73). Answer is 180.0587 kJ/kg