If you have no way to accurately measure all of the object's bumps and dimples, then the only way to measure its volume is by means of fluid displacement.
-- Put some water into a graduated (marked) container, read the amount of water, drop the object into the container, and read the new volume in the container. The volume of the object is the difference between the two readings.
-- Alternatively, stand an unmarked container in a large pan, and fill it to the brim. Slowly slowly lower the object into the unmarked container, while the pan catches the water that overflows from it. When the object is completely down in the container, carefully remove the container from the pan, and measure the volume of the water in the pan. It's equal to the volume of the object.
This type of listening response is called back-channel signal. This allows the speaker to know that the listener is attentive or willing to engage a conversation between them. It is shown through short utterances, facial expressions, head nods and others.
Answer:
It would take
time for the capacitor to discharge from
to
.
It would take
time for the capacitor to discharge from
to
.
Note that
, and that
.
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is
, and the initial charge of the capacitor be
. Then at time
, the charge stored in the capacitor would be:
.
<h3>a)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
<h3>b)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
The temperature of the Ocean affects weather conditions. Because the Gulf Stream moves warmer water from the North Atlantic towards Europe they actually have warmer winters than other areas do.
Answer:
1.04μT
Explanation:
Due to both wires have opposite currents, the magnitude of the total magnetic field is given by

I: electric current = 10A
mu_o: magnetic permeability of vacuum = 4pi*10^{-7} N/A^2
r1: distance from wire 1 to the point in which B is measured.
r2: distance from wire 2.
The distance between wires is 40cm = 0.4m. Hence, r1=0.2m r2=0.6m
By replacing in the formula you obtain:

hence, the magnitude of the magnetic field is 1.04μT