Transverse Waves: Displacement of the medium is perpendicular to the direction of propagation of the wave.
To understand this it is good to think of a rope being held still by person B and being moved up and down by person A. The direction of propagation is from person A to B, so you will see the waves move along this way. But the displacement will be up and down.
Can travel in solids, but not in liquids and gas.
eg. Electromagnetic radiation
Longitudinal Waves: Displacement of the medium is parallel to the direction of propagation of the wave.
A good example for this is a slinky being pushed along the table, the propagation will be along the table and so will the displacement of all the 'rings'.
Can travel through all states of matter.
eg. Sound waves
umm, something tells me it will weight 2 kg
Oh I’m so sorry rip winter
Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.