1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zinaida [17]
3 years ago
14

Hearing the siren of an approaching fire truck, you pull over to the side of the road and stop. As the truck approaches, you hea

r a tone of 470 Hz ; as the truck recedes, you hear a tone of 400 Hz .Howmuch time will it take for the truck to get from your position to the fire 5.0 km away, assuming it maintainsa constant speed?
Physics
1 answer:
11111nata11111 [884]3 years ago
6 0

Answer:

time = 182.68 s

Explanation:

given data

truck approaches = 470 Hz

truck recedes =  400 Hz

position away =  5.0 km

solution

if V is the speed of sound in air and v is the speed to truck

f is the frequency of sound

when truck approach

f1 = \frac{V+v}{V} f  

and when truck recede

f2 = \frac{V+v}{V} f  

so here we can say

\frac{f1}{f2} = \frac{V+v}{V-v}   ...........1

\frac{470}{400} = \frac{340.278+v}{340.278-v}  

v = 27.37 m/s

so here 5 km

S = u×t  + 0.5 ×a×t²  ...........2

5 × 10³ = 27.37 t + 0

t = 182.68 s

You might be interested in
A car moving in the positive direction with an initial velocity of 26 m/s slows down at a constant rate of -3 m/s2. What is its
Greeley [361]
The answer is 5 m/s
- 3 =  \frac{x - 26}{ 7}  \\ x =  \frac{7 \times(  - 3)}{1}  + 26 =  - 21 + 26 \\  = 5




good luck
8 0
3 years ago
A 50 kg pitcher throws a baseball with a mass of 0.15 kg. If the ball is thrown with a positive velocity of 35 m/s and there is
Andreas93 [3]

The velocity of the pitcher is <u>0.105 m/s</u> in a direction opposite to the velocity of the ball.

When no external force acts on a system, the total momentum of the system is conserved. The total initial momentum of the system is equal to the total final momentum of the system.

The pitcher and the ball are initially at rest, therefore, the total initial momentum of the system is zero.

Since no external forces act on the system comprising of pitcher and the ball, the total final momentum of the system is also equal to zero.

If the mass of the pitcher is mp and its speed is vp, the mass of the ball is mb and the ball's speed is vb, then the final momentum of the system of pitcher and the ball is given by,

p=m_pv_p+m_bv_b=0

Therefore,

v_p=-\frac{m_b}{m_p} v_p

Substituet 0.15 kg for mb, 50 kg for mp and 35 m/s for vb.

v_p=-\frac{m_b}{m_p} v_p=-\frac{0.15 kg}{50 kg} (35m/s)=-0.105 m/s

The pitcher has a velocity <u> 0.105 m/s</u> opposite to the direction of the velocity of the ball.

8 0
3 years ago
The chart below shows the average surface temperature or temperature range for each of the eight planets.
Vaselesa [24]

Answer:

A) Earth and the other inner planets have higher average surface temperatures than the outer planets.

Explanation:

the earth and the other inner planets have higher average surface temperatures than the outer planets.

The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.

4 0
3 years ago
Read 2 more answers
Solution A has a specific heat of 2.0 J/g◦C. Solution B has a specific heat of 3.8 J/g◦C. If equal masses of both solutions start
fgiga [73]

Answer: 2. Solution A attains a higher temperature.

Explanation: Specific heat simply means, that amount of heat which is when supplied to a unit mass of a substance will raise its temperature by 1°C.

In the given situation we have equal masses of two solutions A & B, out of which A has lower specific heat which means that a unit mass of solution A requires lesser energy to raise its temperature by 1°C than the solution B.

Since, the masses of both the solutions are same and equal heat is supplied to both, the proportional condition will follow.

<em>We have a formula for such condition,</em>

Q=m.c.\Delta T.....................................(1)

where:

  • \Delta T= temperature difference
  • Q= heat energy
  • m= mass of the body
  • c= specific heat of the body

<u>Proving mathematically:</u>

<em>According to the given conditions</em>

  • we have equal masses of two solutions A & B, i.e. m_A=m_B
  • equal heat is supplied to both the solutions, i.e. Q_A=Q_B
  • specific heat of solution A, c_{A}=2.0 J.g^{-1} .\degree C^{-1}
  • specific heat of solution B, c_{B}=3.8 J.g^{-1} .\degree C^{-1}
  • \Delta T_A & \Delta T_B are the change in temperatures of the respective solutions.

Now, putting the above values

Q_A=Q_B

m_A.c_A. \Delta T_A=m_B.c_B . \Delta T_B\\\\2.0\times \Delta T_A=3.8 \times \Delta T_B\\\\ \Delta T_A=\frac{3.8}{2.0}\times \Delta T_B\\\\\\\frac{\Delta T_{A}}{\Delta T_{B}} = \frac{3.8}{2.0}>1

Which proves that solution A attains a higher temperature than solution B.

7 0
3 years ago
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
Other questions:
  • 21. True or false: During heat transfer heat always travels from the warmer object to the cooler object.
    13·1 answer
  • Which of the following statements is true about the nature of light?
    13·1 answer
  • At what angle North of East must the ship travel to reach its destination? Let East be 0◦ and North 90◦.
    12·1 answer
  • Which law describes the interactions between charged particles when they are not in contact?
    11·2 answers
  • Does DNA produce any particular traits?
    7·1 answer
  • The method of heat transfer by which the sun warms the earth is
    7·2 answers
  • What two forms might terraces take when they become part of a continent
    15·1 answer
  • Hello:)!<br> I don’t really understand the uniform deceleration too :/
    5·1 answer
  • When you place charge on a conducting doorknob by touching it after walking across a carpet, what happens to the charge on the d
    15·1 answer
  • The period of a wave is 20 ms (milliseconds) and its wavelength is 4 cm. Calculate:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!