1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
2 years ago
13

While unrealistic, we will examine the forces on a leg when one falls from a height by approximating the leg as a uniform cylind

er of bone with a diameter of 2.3 cm and ignoring any shear forces. Human bone can be compressed with approximately 1.7 × 108 N/m2 before breaking. A man with a mass of 80 kg falls from a height of 3 m. Assume his acceleration once he hits the ground is constant. For these calculations, g = 10 m/s2.
Part A: What is his speed just before he hits the ground?
Part B: With how much force can the "leg" be compressed before breaking?
Part C: If he lands "stiff legged" and his shoes only compress 1 cm, what is the magnitude of the average force he experiences as he slows to a rest?
Part D: If he bends his legs as he lands, he can increase the distance over which he slows down to 50 cm. What would be the average force he experiences in this scenario?
Part E: Dyne is also a unit of force and 1 Dyn= 10−5 N. What is the maximum a bone can be compressed in Dyn/cm2?
Part F: Which of the following is the reason that we would recommend that the man bend his legs while landing from such a fall?
a. Bending his legs allows him to push back up on the ground and negate some of the effects of the force applied by the ground.
b. Bending his legs decreases the speed at which he hits the ground, thus decreasing the force applied by the ground.
c. Bending his legs decreases his overall change in momentum, thus decreasing the force applied by the ground.
d. Bending his legs increases the time over which the ground applies force, thus decreasing the force applied by the ground.
Physics
1 answer:
Leno4ka [110]2 years ago
7 0

Answer:

Part A: 7.75 m/s

Part B: 2330.8 kN

Part C: 24.03 kN

Part D: 4.8 kN

Part E: 1.7\times 10^{9} Dyn/cm^{2}

Part F: Option D

Bending his legs increases the time over which the ground applies force, thus decreasing the force applied by the ground.

Explanation:

<u>Part A </u>

From the fundamental kinematic equation

v^{2}=u^{2}+2gh where v is the velocity of the man just before hitting the ground, g is acceleration due to gravity, u is initial velocity, h is the height.

Since the initial velocity is zero hence

v^{2}=2gh

v=\sqrt 2gh

Substituting 10 m/s2 for g and 3 m for h we obtain

v=\sqrt 2\times 10\times 3 =\sqrt 60= 7.745967\approx 7.75 m/s

<u>Part B </u>

Force exerted by the leg is given by

F=PA where P is pressure, F is force, A is the cross-section of the bone

A=\frac {\pi d^{2}}{4}

Substituting 2.3 cm which is equivalent to 0.023m for d and 1.7\times10^{8} N/m2 for P we obtain the force as

F=PA=1.7\times10^{8}*\frac {\pi (0.023)^{2}}{4}= 2330818.276\approx 2330.8 kN

<u>Part C </u>

The fundamental kinematic equation is part (a) can also be written as

v^{2}=u^{2}+2a\triangle x and making a the subject then

a=\frac {v^{2}-u^{2}}{2\triangle x} where a is acceleration and \triangle x is the change in length

Substituting the value obtained in part a, 7.75 m/s for v, u is zero and 1cm which is equivalent to 0.01 m for \triangle x then  

a=\frac {7.75^{2}-0^{2}}{2\times 0.01}= 3003.125 m/s^{2}

Force exerted on the man is given by

F=ma=80\times 3003.125= 240250 N\approx 24.03 kN

<u>Part D </u>

The fundamental kinematic equation is part (a) can also be written as

v^{2}=u^{2}+2a\triangle h and making a the subject then

a=\frac {v^{2}-u^{2}}{2\triangle h} where a is acceleration and \triangle h is the change in height

Also, force exerted on the man is given by F=ma=m\times \frac {v^{2}-u^{2}}{2\triangle h}

Substituting 80 Kg for m, 50 cm which is equivalent to 0.5m for \triangle h and other values as used in part c

F=ma=m\times \frac {v^{2}-u^{2}}{2\triangle h}=80\times \frac {7.75^{2}-0^{2}}{2\times 0.5}= 4805 N\approx 4.8 kN

<u>Part E </u>

P=1.7\times 10^{8}=1.7\times 10^{8}\times (\frac {10^{5} Dyn}{10^{4} cm^{2}}=1.7\times 10^{9} Dyn/cm^{2}

Part F

Bending his legs increases the time over which the ground applies force, thus decreasing the force applied by the ground

You might be interested in
chuck wagon travels with a constant velocity of 0.5 mile/minutes. determine the total distance traveled by Chuck Wagon during 12
n200080 [17]

Given:

Velocity: 0.5 mile/minute

Time: 12 minute

Now we know that speed and velocity have the same magnitude. Hence speed=velocity=0.5 mile/min

Substituting the given values in the above formula we get

Distance = 0.5 x 12= 6 miles

7 0
3 years ago
I need someone to help on this number!
Artist 52 [7]
Radioactive decay in the core releases energy. When the sun matter is heated it reduced in density and rises to the surface of the sun, meaning the energy is transferred to the surface.
6 0
3 years ago
According to the Guinness Book of World Records (1990 edition, p. 169), the highest rotary speed ever attained was 2010 m/s (450
Valentin [98]

When a body performs a uniform circular motion, the direction of the velocity vector changes at every moment. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circle that gives rise to centripetal acceleration, the mathematical expression is given as,

a = \frac{v^2}{r}

Where,

v =  Tangential Velocity

r = Radius

The linear velocity was 2010m/s in a radius of 0.159m, then the centripetal acceleration is

a = \frac{2010^2}{0.159}

a = 2.54*10^7m/s^2

Therefore the centripetal acceleration of the end of the rod is 2.54*10^7m/s^2

7 0
3 years ago
Is it true or false that wave interference only occurs with transverse waves?
Mama L [17]
I am not 100% sure but i think it is true.
7 0
2 years ago
A car is moving at a velocity of 25 ms-1.
lianna [129]
Velocity = 25 + (6x3)= 43 m/s
3 0
3 years ago
Other questions:
  • Which medium is the greatest threat to the printed newspaper?
    7·1 answer
  • A temperature of 20°c is equivalent to approximately
    11·2 answers
  • You are walking along a small country road one foggy morning and come to an intersection. While you are crossing, you hear an am
    6·1 answer
  • 12. One object has half the mass of another object. The first object also has half the ---.
    7·1 answer
  • A 26-cm-long wire with a linear density of 20 g/m passes across the open end of an 86-cm-long open-closed tube of air. If the wi
    9·1 answer
  • An open cart is rolling to the left on a horizontal surface. A package slides down a chute and lands in the cart. Which quantity
    15·1 answer
  • why do you believe in social learning theory and how does learning many of our morals and practice from our family uniil we grow
    15·1 answer
  • Help me please Am I correct???​
    14·1 answer
  • PLEASE HELP While the Earth is revolving around the sun, less direct sunlight is reaching the Northern Hemisphere than the South
    7·1 answer
  • Which equation represents a neutralization reaction?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!