Answer:
Water normally freezes at 0°C (32°F). Salt lowers the freezing temperature. (That is, it can remain a liquid at much lower temperatures.)
When sprinkled on ice, the salt lowers the freezing temperature of the water which effectively melts the ice when the salt dissolves into it. There is a limit to how low it can reduce the temperature, though. If the temperature drops below -9°C (15°F), it's too cold for the salt to dissolve into the ice.
When making ice cream, the salt lowers the temperature of the ice and water sufficiently enough to freeze the cream.
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Let us consider two vectors A and B.
As per the question, the two vectors are perpendicular to each other.
Hence the angle between them 
We are asked to calculate the resultant of these two vectors.
As per parallelogram law of vector addition, the resultant of two vectors are-

[cos90=0]

This is the way by which we can add two perpendicular vectors.
Answer:
please give me brainlist and follow
Explanation:
4 degrees C turns out to be the temperature at which liquid water has the highest density. If you heat it or cool it, it will expand. ... Ice floats on top of lakes, preventing evaporation (and convection in the frozen layer), and lakes stay liquid underneath, allowing fish and other life to survive.