Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
According to Charles law, we know, at constant pressure, volume is directly proportional to temperature.
So, <span>V/T = constant
</span>
V₁/t₁ = V₂/t₂
V₁t₂ = V₂t₁
Here, we have: V₁ = 9 mL
V₂ = ?
T₂ = 50+272 = 323 K
T₁ = 19+273 = 292 K
Substitute their values into the expression:
9 × 323 = V₂ × 292
V₂ = 2907 / 292
V₂ = 9.95
After rounding-off to unit place value, it would be equal to 10 mL
So, In short Option C would be your correct answer.
Hope this helps!
Answer:
My scenario would be A Car vs. a guard rail on a road. You have a car that is coming down a Highway at a speed of 43 Mph Miles per hour (69.2018 Kmh)
And it hits a steel guardrail and the car smashes in at the front and the guardrail is only bent while the car has the bumper and the hood along with the headlights and windshield along with the passenger side window break.
Explanation:
This is caused by so much force reacting from one object to another but also depends on molecular density.
Answer:
Final mass=0.89kg
Final pressure=5.6bar
Explanation:
To find mass,m=v/v1
But v1=vf + x(vg-vf)
Vf= 0.001093m^3/kg
Vg= 0.3748m^3/kg
V1= 0.001093+0.5(0.3748-0.001093)
V1= 0.225m^3/kg
M= 0.20/0.225 =0.89kg
Final pressure will be:
V/V1= P/P1
Cross multiply
VP1=V1P
P1= 0.225×5/0.2
P1=:5.6 bar