Answer:
The metal atoms in the wire can't move, but their outer electrons can. The force pushes those electrons and they move to further parts of the wire, trying to reach the other end. As the electrons move away, new electrons flow into the wire through the battery to take their place.
Explanation:
Answer;
=0.43 m/s²
Solution;
There will be the tension in the cable, T, upwards and the weight of the elevator, mg, downwards.
By Newton's second law, the sum of the forces will be equal to mass×acceleration.
Resultant force = m × a
Then T - mg = ma so the tension in the cable is
T = m(g+a)
The cable will break when T = 21,800 N
Solving for a, that happens when
a = 21800/2130 - g
= 10.23 - g (in m/s^2)
If you're using g = 9.8 m/s^2
Then the maximum acceleration allowed is 10.23-9.8 = 0.43 m/s^2
Vi = 2m/s
a= 4.5 m/s
d= 340 m
vf= ?
use this equation ... vf^2=vi<span>^2+2ad
you should get vf = 55.3
hope this helps </span>