Answer:
The answer is A.
Explanation:
Gas particles do not have a fixed position or volume so they move in <em>r</em><em>a</em><em>n</em><em>d</em><em>o</em><em>m</em><em> </em><em>s</em><em>p</em><em>e</em><em>e</em><em>d</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>d</em><em>i</em><em>r</em><em>e</em><em>c</em><em>t</em><em>i</em><em>o</em><em>n</em><em>s</em>.
(Correct me if I am wrong)
Answer:
See explanation
Explanation:
Molar mass of NaCl = 58.5 g
Number of moles contained in 10 g of NaCl = 10 g/58.5 g = 0.17 moles
If 1 mole of NaCl contains 6.02 * 10^23 atoms
0.17 moles of NaCl contains 0.17 * 6.02 * 10^23 atoms = 1.02 * 10^23 atoms
Molar mass of Fe II chloride = 126.751 g/mol
Number of moles = 10 g/126.751 g/mol = 0.0789 moles
Number of atoms = 0.0789 moles * 6.02 * 10^23 atoms = 4.7 * 10^22 atoms
Molar mass of Na = 23 g/mol
Number of moles = 10g/23 g/mol = 0.43 moles
Number of atoms = 0.43 moles * 6.02 * 10^23 atoms = 2.59 * 10^ 23 atoms
Answer:
1. Answer: The bowling ball has more potential energy as it sits on top of the building. It does not have any kinetic energy because it is not moving.
2. Answer: The bowling ball has equal amounts of potential and kinetic energy half way through the fall. At the half way point, half of the potential energy has been converted to kinetic energy.
3. Answer: Just before the ball hits the ground, it has more kinetic energy. As it hits the ground the potential energy becomes zero.
4. Answer:
PE=784 J
5. Answer:
PE = 392 J
6. Answer:
KE= 392 J
Also, since the PE and KE are equal at the half way point and PE =392 J, KE = 392 J.
7. What is the kinetic energy of the ball just before it hits the ground?
Answer:
KE=784 J
At first I answered in the comments, but I am able to answer now. I hope this can help