<span>C6H12O6 + O2 -> CO2 + H2O + energy, otherwise expressed as glucose plus oxygen converted into carbon dioxide plus water plus energy. It includes glycolysis, the Krebs Cycle, and oxidative phosphorylation to properly balance.
The finished equation should look like this: C6H12O6 + 6O2 -> 6CO2 + 6H2O + energy</span>
DNA<span> and </span>RNA<span> are nucleic acids found in the cells of living organisms. ... The </span>synthesis<span> of </span>proteins<span> starts with transcribing the instructions in </span>DNA<span> into mRNA. The mRNA is then carried out of the cell's nucleus into the cytoplasm, specifically into structures called ribosomes.</span>
Answer: Options A, B, C and D are correct.
Explanation: They can trigger the activity of histone acetyltransferases.
These RNAs functions by binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II.
They can silence genes by promoting the formation of euchromatin by arranging hetero- or euchromatic regions into close proximity may stabilize these domains or it may control the spreading of post-translational modifications (PTMs) to nearest chromatin.
They are actively involved in X chromosome inactivation.
They can regulate the translation and stability of mRNAs.
In Eukaryotic cells RNA transcription is a closely regulated process. Transcription of a lncRNA may regulate the transcription of nearby mRNA genes, either positively (maintaining active chromatin structure) or negatively (for example, colliding polymerases). In these cases, the RNA product may have no importance at all, or it could have an additional function.
Monerans, now known as bacteria, have many beneficial effects. Some, such as the species that live in the intestines