g(θ) = 20θ − 5 tan θ
To find out critical points we take first derivative and set it =0
g(θ) = 20θ − 5 tan θ
g'(θ) = 20 − 5 sec^2(θ)
Now we set derivative =0
20 − 5 sec^2(θ)=0
Subtract 20 from both sides
− 5 sec^2(θ)=0 -20
Divide both sides by 5
sec^2(θ)= 4
Take square root on both sides
sec(θ)= -2 and sec(θ)= +2
sec can be written as 1/cos
so sec(θ)= -2 can be written as cos(θ)= -1/2
Using unit circle the value of θ is 
sec(θ)= 2 can be written as cos(θ)=1/2
Using unit circle the value of θ is 
For general solution we add 2npi
So critical points are

The tree diagram of the problem above is attached
There are four outcomes of the two events,
First test - Cancer, Second Test - Cancer, the probability is 0.0396
First test - Cancer, Second Test - No Cancer, the probability is 0.0004
First test - No Cancer, Second Test - There is cancer, the probability is 0.0096
First test - No cancer, Second Test - No cancer, the probability is 0.9054
The probability of someone picked at random has cancer given that test result indicates cancer is

The probability of someone picked at random has cancer given that test result indicates no cancer is
Answer:

Step-by-step explanation:
we know that
She rides for 11.2 kilometers at a speed of 7 kilometers per hour
Using proportion
Find how many hours does she ride

They would each get 6 dollars and 66 cents :) ♥♥