Answer:
y=15/4
z=15/2
b=
![\frac{15 \sqrt{3} }{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7B15%20%5Csqrt%7B3%7D%20%7D%7B4%7D%20)
Step-by-step explanation:
Use the equations:
![y = h](https://tex.z-dn.net/?f=y%20%3D%20h)
Where y is adjacent to angle 60 and 30
![y = \frac{h}{2}](https://tex.z-dn.net/?f=y%20%3D%20%20%5Cfrac%7Bh%7D%7B2%7D%20)
Where y is adjacent to angles 60 and 90
![\frac{h \sqrt{3} }{2} = y](https://tex.z-dn.net/?f=%20%5Cfrac%7Bh%20%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20%3D%20y)
Where y is adjacent to angles 30 and 90
First lets find z
Segment a+b is the hypotenuse in the whole triangle.
Z is adjacent to angles 60 and 90, therefore we use the second formula.
Since we know the value of hypotenuse which is 15, subsitute h to 15 then simplify
![\frac{15}{2} = z](https://tex.z-dn.net/?f=%20%5Cfrac%7B15%7D%7B2%7D%20%20%3D%20z)
Next is y
y is a 60-90 segment like z, but this time we're going to use z as hypotenuse. Since y is a 60-90 segment, use second equation
![\frac{ \frac{15}{2} }{2} = y](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Cfrac%7B15%7D%7B2%7D%20%7D%7B2%7D%20%20%3D%20y)
![\frac{15}{4} = y](https://tex.z-dn.net/?f=%20%5Cfrac%7B15%7D%7B4%7D%20%20%20%3D%20y)
Lastly is b
b is a 30-90 segment therefore we will use the 3rd equation. We'll use z as hypotenuse as well.
![\frac{ \frac{15}{2} \sqrt{3} }{2} = b](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Cfrac%7B15%7D%7B2%7D%20%20%5Csqrt%7B3%7D%20%7D%7B2%7D%20%20%3D%20b)
![\frac{15 \sqrt{3} }{4} = b](https://tex.z-dn.net/?f=%20%5Cfrac%7B15%20%5Csqrt%7B3%7D%20%7D%7B4%7D%20%20%3D%20b)