Answer:
P = f(TLTL) = 0,16
H = f(TLTS) = 0,48
Q = f(TSTS) = 0,36
Explanation:
Hello!
The allele proportion of any locus defines the genetic constitution of a population. Its sum is 1 and its values can vary between 0 (absent allele) and 1 (fixed allele).
The calculation of allelic frequencies of a population is made taking into account that homozygotes have two identical alleles and heterozygotes have two different alleles.
In this case, let's say:
f(TL) = p
f(TS) = q
p + q = 1
Considering the genotypes TLTL, TLTS, TSTS, and the allele frequencies:
TL= 0,4
TS= 0,6
Genotypic frequency is the relative proportion of genotypes in a population for the locus in question, that is, the number of times the genotype appears in a population.
P = f(TLTL)
H = f(TLTS)
Q = f(TSTS)
Also P + H + Q = 1
And using the equation for Hardy-Weinberg equilibrium, the genotypic frequencies of equilibrium are given by the development of the binomial:



So, if the population is in balance:



Replacing the given values of allele frecuencies in each equiation you can calculate the expected frequency of each genotype for the next generation as:



I hope you have a SUPER day!
Answer: D
Explanation:
The oven probably isn’t cooking right because the temperature strength is not as strong as the average oven.
Answer:
be heritable and be an advantage to offspring
Answer:
In a nutshell, qualitative research generates “textual data”
Explanation:
hope it helps pls mark as brainliest
Answer:
How do the nutrients found in plants function in plant DNA?
Plants take up essential elements from the soil through their roots and from the air (mainly consisting of nitrogen and oxygen) through their leaves. Nutrient uptake in the soil is achieved by cation exchange, wherein root hairs pump hydrogen ions (H+) into the soil through proton pumps.
Is the function of plant DNA similar to human DNA?
How much DNA do plants share with humans? Over 99%? ALL animals and plants share the same DNA which is basically a code of only 4 'letters' which code for the same amino acids from which all proteins are made.
Explanation: