What is x
First you use distributive property
60x+70=26
Next subtract 70 on both sides which gives you -44
60x=-44
Then you divide 60 into -44 which will give you -1.36__36 is repeathing
so X=-1.36 repeading
![\bf \cfrac{x}{4x+x^2}\implies \cfrac{\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}}{\begin{matrix} x \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~(4+x)}\implies \cfrac{1}{4+x}\qquad \{x|x\in \mathbb{R}, x\ne -4\}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7Bx%7D%7B4x%2Bx%5E2%7D%5Cimplies%20%5Ccfrac%7B%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D%7D%7B%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%284%2Bx%29%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B4%2Bx%7D%5Cqquad%20%5C%7Bx%7Cx%5Cin%20%5Cmathbb%7BR%7D%2C%20x%5Cne%20-4%5C%7D)
if you're wondering about the restriction of x ≠ -4, is due to that would make the fraction with a denominator of 0 and thus undefined.
Answer:
Total Profit = P(a,b) = ($0.40a) + ($0.40b), where a = # of apples sold and b = # of bananas sold.
Answer:
- Question 1a. i)

- Question 1a. ii)

- Question 1b)

Explanation:
<u><em>Question 1 a. i) Find the value of x.</em></u>

For the smalll triangle you can write:

For tthe big triangle:

Substitute:

Solve for x:

<u><em>Question 1a ii) Find the volume of the frustrum</em></u>
- Find the volume of a cone with height = 2.7m + 1.8m = 4.5m, and radius = 2.5m
Formula:

Substitute:

- Find the volume of a cone with heigth = 1.8m and radius = 1m

- Subtract the volume of the small cone from the volume of the big cone

<u><em>Question 1b. Calculate the volume of the bin</em></u>
<u>i) Upper frustrum</u>
This is the same frustrum from the equation of above, thus ist volume is 27.6m³.
<u>ii) Lower frustrum</u>




<u>iii) Add the volume of the two frustrums</u>
Looking at the triangle from the aspect of the reference angle, the tangent of that angle would be the ratio of the side opposite the angle over the side adjacent to the angle (which is NOT the hypotenuse!)