Answer:
R
Step-by-step explanation:
I know my picture stinks, but it is possible. If you make it into a triangle shape, but move the table a bit closer to the throwing wheel (as shown) it works out great. If you ever get a problem like his again, just think outside the box for different solutions.
Answer: Lattice parameter, a = (4R)/(√3)
Step-by-step explanation:
The typical arrangement of atoms in a unit cell of BCC is shown in the first attachment.
The second attachment shows how to obtain the value of the diagonal of the base of the unit cell.
If the diagonal of the base of the unit cell = x
(a^2) + (a^2) = (x^2)
x = a(√2)
Then, diagonal across the unit cell (a cube) makes a right angled triangle with one side of the unit cell & the diagonal on the base of the unit cell.
Let the diagonal across the cube be y
Pythagoras theorem,
(a^2) + ((a(√2))^2) = (y^2)
(a^2) + 2(a^2) = (y^2) = 3(a^2)
y = a√3
But the diagonal through the cube = 4R (evident from the image in the first attachment)
y = 4R = a√3
a = (4R)/(√3)
QED!!!
I don’t now what the answer is sorry I will try and figure it